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The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is
studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained
and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show
field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly,
for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the
emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role
in the optical response of both materials, particularly for the off-diagonal tensor elements.
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I. INTRODUCTION

Single-walled carbon nanotubes (CNTs) and graphene
nanoribbons (GNRs) are prominent quasi-one-dimensional
carbon-based structures defined geometrically as cylindrical
tubes and thin strips of graphene, respectively. The two
materials are intimately related, since GNRs can be regarded
as (and produced from) unrolled CNTs [1,2]. Moreover, both
materials have a large number of potential applications in
various areas of electronics and optoelectronics [3–6]. The
reduced dimensionality and screening of narrow GNRs and
small radius CNTs lead to excitons with binding energy on
the order of a few hundred meV [7–10]. Therefore, excitons
have a strong impact on the optical response of both CNTs [9]
and GNRs [11,12] and must be accounted for in models of the
optical response.

Excitons are sensitive to a number of external perturbations,
such as electric and magnetic fields. For instance, magnetic
fields can be used as an effective tool to probe various
properties of excitons, including their transport [13] and spatial
extent [14]. Additionally, an accurate understanding of the
dynamics of magnetoexcitons reveals details of the role played
by magnetic fields in optoelectronic devices [15,16]. The
electronic and optical properties of CNTs in the presence of a
static magnetic field were considered theoretically in a series
of papers by Ando [17–19], and the results were later verified
experimentally [20–26]. However, the off-diagonal elements
of the conductivity tensor were not evaluated in these papers.
The presence of an external magnetic field breaks time-reversal
symmetry and results in finite off-diagonal conductivity ele-
ments [27], also called the Hall conductivities. Calculating the
off-diagonal conductivity for CNTs and GNRs is one of the
objectives in the present paper. The Hall conductivity gives
rise to the optical Hall effect manifesting itself as Faraday
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rotation [28] of the electromagnetic field, which is important
for several electro-optic applications [29,30]. The Faraday
rotation for CNTs [28] and GNRs [31] has been calculated
in the independent-particle approximation. But, as discussed
above, this approximation is not well suited to describe the
optical response of CNTs and GNRs. The solution is to include
excitonic effects, which we do in the present work.

With respect to GNRs, the amount of theoretical work is
rather limited compared to the case of CNTs. The available
works either focus on GNRs in the presence of a magnetic
field without excitons [32,33] or the converse [11,12] (i.e.,
including excitons but not an external magnetic field). In
the present work, we improve upon this by calculating the
magnetoexcitonic response for a range of GNRs.

An additional interesting aspect of quasi-one-dimensional
systems, including CNTs, GNRs, and conjugated polymers, is
that these can serve as convenient test systems for theoretical
methods. Recent years have seen an increase in experimental
work on magnetoexcitonic effects in two-dimensional semi-
conductors such as transition metal dichalcogenides [34–37].
In this class of materials, a number of challenges limit theoret-
ical models of magnetoexcitons to effective-mass models [38].
In comparison, quasi-one-dimensional systems are much less
computationally demanding. As a consequence, it is possible
to obtain an accurate description of magnetoexcitons in these
systems. Thus, we will present calculations of all the elements
of the linear optical conductivity tensor for a number of
different CNTs and GNRs. Our calculations are based on
a tight-binding model that provides the independent-particle
properties, while the excitonic properties are obtained from
the Bethe-Salpeter equation.

II. THEORETICAL MODELS

In this section, we will briefly describe the applied theo-
retical models and computational tools. The GNR and CNT
structures are illustrated in Fig. 1. In general, both GNRs
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FIG. 1. (a) CNT and GNR structures as seen in the direction of
the z axis. (b) Side view of the CNT and GNR structures. The GNR
structure is parallel to the yz plane, with a magnetic field at an angle
θ to the yz plane and in the xz plane.

and CNTs exist in a variety of geometries. Hence, GNRs are
characterized by their width and edge type, whereas CNTs are
defined by their chiral index (n,m) that, in turn, determines
diameter and chirality [39]. However, in the present work,
we limit ourselves to zigzag CNTs with chiral indices (n,0)
for n ∈ N+, and armchair GNRs characterized by the number
of dimer lines N across the ribbon, which we denote by
N -AGNRs. We ignore any effects of geometrical relaxation
of edge atoms. For calculation of the independent-particle
energies and wave functions, we apply a nonorthogonal π -
electron nearest-neighbor tight-binding (TB) model. Studies
have shown that the single-particle properties of carbon-based
materials, e.g., graphene, CNTs, and GNRs, are well described
by π -electron TB models [39,40]. The choice of a nonorthog-
onal (in contrast to the usual orthogonal) TB model is made to
break the electron-hole symmetry, as electron-hole symmetry
results in Hall conductivities that are identically zero [27,28].

The external magnetic field is introduced via the minimal
substitution of the momentum operator p̂ �→ π̂ = p̂ + eA,
where A denotes the magnetic vector potential, related to
the magnetic field B via B = ∇ × A. In a TB model, the
substitution gives rise to a Peierls phase factor in the hopping
integrals t such that t �→ tij = teiφij , with the Peierls phase
given by [41]

φij = e

h̄

∫ Rj

Ri

A · dl, (1)

where Ri and Rj denote the location of atoms at site i and j ,
respectively. For periodic systems in more than one dimension,
the phase factor necessarily breaks the translation symmetry.
However, given an appropriate choice of gauge, the translation
symmetry can be preserved in one-dimensional (1D) systems.
This fact is responsible for the relative tractability of 1D
magnetoexcitons, in contrast to two and three dimensions (2D,
3D). The appropriate gauge depends on the direction of the
magnetic field. As illustrated in Fig. 1, we take the long axis
along z and consider a magnetic field B = B(sin θ x̂ + cos θ ẑ),
where θ is the angle between field and long axis, and B = |B|
is the magnetic field strength. For this geometry, the symmetry-
preserving gauge is

A = −By(cos θ x̂ − sin θ ẑ). (2)

Below, however, we only consider parallel (θ = 0) and per-
pendicular (θ = π/2) magnetic fields. Moreover, for GNRs
we only consider perpendicular fields, since the electronic

structure and optical response of GNRs are unaffected by a
parallel field.

A. Excited states

Using the independent-particle energies and wave func-
tions, the exciton states of the systems can be found by solving
the Bethe-Salpeter equation (BSE) [7,42,43]. The excited
states |exc〉 can be expanded as

|exc〉 =
∑
cvk

�cvk|vk → ck〉, (3)

where �cvk are the expansion coefficients, and |vk → ck〉 are
the singlets of singly excited states between the valence (v) and
conduction (c) bands at k. Using the expansion of the excited
states in Eq. (3), the BSE is expressed as

Ecvk�cvk +
∑
c′v′k′

Kcvk,c′v′k′�c′v′k′ = Eexc�cvk, (4)

Kcvk,c′v′k′ := Wcvk,c′v′k′ − 2Vcvk,c′v′k′ ,

where Eexc is the exciton energy, Ecvk = Eck − Evk , Vcvk,c′v′k′

is the exchange matrix element, and Wcvk,c′v′k′ is the Coulomb
interaction matrix element. We follow Ref. [44] and calculate
the exchange and Coulomb interaction matrix elements using
an Ohno-type potential, which has been shown to produce
results that compare well with more advanced models and
experiments for quasi-1D systems [44]. In this approximation,
the bare electron-hole interaction takes the form

v(re − rh) = −U

[
1 +

(
4πε0U

e2

)2

|re − rh|2
]− 1

2

, (5)

where re and rh are the position of the electron and hole,
respectively, and U = 11.3 eV is the Hubbard energy [45].
The screened Coulomb interaction matrix elements are then
calculated using W (re − rh) = v(re − rh)/ε, where ε is the
screening parameter. The Coulomb term is screened by both the
self-screening and the screening from the surrounding media.
Similarly, the exchange matrix elements can be calculated
using W (re − rh) = v(re − rh)/εexc, where εexc denotes the
screening of the exchange term. According to Ref. [46], the
exchange term should only be screened by the surrounding
media; thus we have that εexc < ε.

It is worth noting that the dimension of the eigenvalue
problem in Eq. (4) is given by Nc × Nv × Nk , where Nc,Nv ,
and Nk are the number of conduction bands, valence bands,
and k points, respectively. Even for a reasonably small system
such as the (8,0) CNT, which has 32 atoms in the unit cell and
a k grid with 150 points, the Bethe-Salpeter matrix (BSM) has
dimension 38 400 × 38 400. Thus, using this method for typi-
cal chiral CNTs such as (6,5) CNTs with unit cells containing
several hundred atoms is computationally unfeasible.

B. Optical response

The evaluation of the optical conductivity tensor, in the
presence of electron-hole interactions, follows that of Ref. [47].
The many-body momentum operator acting on the many-body
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ground state is

|Pi〉 := P̂i |0〉 =
√

2
∑
cvk

pi
cvk�cvk, (6)

where |0〉 is the many-body ground state and P̂i and pi
cvk are the

many-body momentum operator and the single-particle mo-
mentum matrix elements in direction i ∈ {x,y,z}, respectively.
Ignoring the nonresonant terms of the optical conductivity
tensor, the real part of the tensor elements can be expressed
as [47]

Reσij = − e2

m2ωA
Im〈Pi |Ĝ(h̄ω)|Pj 〉, (7)

where h̄ω is the photon energy, Ĝ(h̄ω) is the many-body
Green’s function, and A is the cross-sectional area of the
system, where the height of the ribbon and the wall thickness
of the tubes is taken to be d = 3.35 Å [48]. In terms of the
many-body Hamiltonian Ĥ , the Green’s function Ĝ(h̄ω) is
defined by

Ĝ(h̄ω) := lim
η→0+

1

h̄ω − Ĥ + iη
. (8)

To increase the numerical stability, we use a finite η ≈ 1 meV
in Eq. (8), and to add additional broadening to the spectra
obtained by Eq. (7), we convolute with a Lorentzian line-shape
function having a width 
.

The off-diagonal tensor elements, i.e., σij for i �= j , are
the so-called Hall conductivities. This notation stems from
the fact that, if the off-diagonal tensor elements are finite, the
system exhibits the optical Hall effect, in analogy to the electric
Hall effect in the static case. The optical Hall effect is closely
related to the Faraday rotation of a material [27,28], whereby
the polarization plane of light rotates as the wave propagates
in the material under the influence of a magnetic field. The
Faraday rotation for a weak magnetic field in the z direction
reads [27]

φ = l

2cε0

nReσxy − κImσxy

n2 + κ2
ρ, (9)

where l is the propagation distance of the light, c is the speed
of light, ε0 is the vacuum permittivity, ρ is an effective volume
fraction of either AGNRs or CNTs in space, and n + iκ is the
complex refractive index at B = 0. In the idealized situation,
where either CNTs or AGNRs are packed tightly in space, the
volume fraction is ρ = 1 and otherwise 0 � ρ < 1. For weak
magnetic fields the Hall conductivities are linear in B [27],
and the Faraday rotation can be expressed φ = V lBρ, where
V is the Verdet constant. Measurements of the Faraday rotation
provide a convenient experimental method for determining
the optical Hall conductivity, even at low magnetic field
strengths [49].

With regards to the diagonalization of the BSM, a significant
reduction in computation time can be obtained if one does
not need the eigenvalues and eigenstates of the BSE but only
the matrix elements of the Green’s function, which can be
calculated effectively using the Lanczos-Haydock routine [50].
The routine allows for efficient evaluation of matrix elements
of the type 〈u|Ĝ|u〉 by a recursive tridiagonalization of the
Hamiltonian and subsequent evaluation of the matrix element

using continued fractions. When convergence of the continued
fractions is obtained, the calculations can be truncated. For
evaluation of the Hall conductivities involving off-diagonal
matrix elements of the type 〈v|Ĝ|u〉, one can make use of the
relation

〈v + iu|Ĝ|v + iu〉 = 〈v|Ĝ|v〉 + 〈u|Ĝ|u〉 + i2Im〈v|Ĝ|u〉
(10)

and the similar relation for 〈v + u|Ĝ|v + u〉 to find the real
part of 〈v|Ĝ|u〉.

III. RESULTS AND DISCUSSION

In this section, we present and discuss binding energies
and optical response of magnetoexcitons for a range of CNT
and GNR geometries. All results have been obtained using
t = −3.0 eV for the hopping integral and s = 0.1 for the
overlap in the TB model. The spectra are normalized by a
factor σ0 = e2/dh̄ and convoluted with a Lorentzian line-shape
function with a broadening of 0.08 eV. Convergence of the
Lanczos-Haydock routine was obtained after 2000 iterations.
The screening of the Coulomb matrix elements is set to
ε = 3.5, corresponding to CNTs in an aqueous solution [9].
For the exchange term, we find that a value of εexc = 2.5 is
appropriate, similarly to what was used in Ref. [44]. As our
primary interest is a qualitative description of the effect of
an external magnetic field on the excitonic response, we have
used the same screening for the GNR calculations. So far,
experimental absorption spectra for AGNRs are only available
for AGNRs deposited on some type of metal [51,52]. Metal
substrates strongly screen the Coulomb interaction and, hence,
suppress the excitonic effects significantly.

We begin our presentation of the results by focusing on
the real part of the diagonal optical conductivity elements σzz

and σyy , denoting the parallel-polarized and cross-polarized
absorption, respectively. The first and second column in Fig. 2
show the absorption spectra for (8,0) and (5,0) CNTs, respec-
tively. In the considered photon energy range, there are two
dominant peaks in the parallel-polarized exciton absorption of
CNTs in the absence of magnetic fields. The peaks correspond
to the first and second subband transitions and are typically
denoted E11 and E22. These spectra show the same features as
spectra obtained using more advanced ab initio methods [42].

When the magnetic field becomes sufficiently strong, the
Ajiki-Ando (AA) [18,19] splitting of the excitonic peaks in
the σzz spectra can be observed. Without Coulomb effects
(the dashed lines in Fig. 2), the splitting of the absorption
peaks is caused by a field-assisted lifting of the twofold
degenerate valence and conduction bands. Coulomb effects,
i.e., excitons, lift the degeneracy partially and result in three
exciton states: two nondegenerate (one dark and one bright)
and a dark state, which is twofold degenerate [45]. The zero-
field energy difference between the nondegenerate bright and
dark exciton states is denoted bd . The observed splitting of
the exciton absorption peak is then caused by the magnetic
field brightening the nondegenerate dark exciton state and
increasing the energy separation. The energy difference bd

was reported in Refs. [19,43] to be proportional to 1/d2
t , where

dt is the CNT diameter. Similarly, both the field-dependent
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FIG. 2. Real part of the independent-particle (dashed lines) and excitonic (solid lines) diagonal conductivities σzz and σyy of (5,0) and
(8,0) CNTs, and 10- and 16-AGNRs. The colors of the spectra correspond to the same magnetic field strengths in all plots. For the CNTs, the
magnetic field is oriented in the parallel direction, while for GNRs it is oriented in the perpendicular direction.

increase in the energy splitting and the field-dependent change
in oscillator strength of the bright and dark excitons depend
on the CNT diameter [18,19]. The field-dependent increase in
the energy splitting is proportional to dt , while the changes
in oscillator strength of the bright and dark excitons are
dampened when bd is increasing[18]. Consequently, the
observed splitting is not as clear for the (5,0) CNTs as for the
(8,0) CNTs. For experimental observation of the AA splitting,
one would need to use either large-diameter CNTs [20–22]
or very strong fields [26], as illustrated here. The splitting we
observe in the BSE results is comparable to what was reported
in Refs. [18] and [19] using the k · p model, and what was
observed experimentally for (6,5) CNTs in Ref. [26]. The
AA splitting is only observed in parallel fields. The diagonal
conductivities of CNTs in the presence of a perpendicular field
do not show any significant change in fields up to 500 T and
are therefore not shown.

Turning now to the diagonal conductivity tensor elements
of AGNRs in perpendicular fields, the parallel- and cross-
polarized absorption spectra are shown in the third and the
fourth column of Fig. 2. The unperturbed spectra show two
dominant exciton peaks similar to what was obtained using
ab initio methods [7,12]. We reuse notation and denote the
peaks by E11 and E22. As the magnetic field strength is
increased, the E11 peak is shifted to lower energies, and the
shift of the peak is accompanied by a decrease in oscillator
strength. Similarly, the E22 peak is shifted to higher energies
and the oscillator strength of that peak is also decreased.
Simultaneously, a new peak between the E11 and E22 peaks
emerges for strong magnetic fields. We also observe that the
effect is stronger for the wider AGNR, which is caused by
the increased magnetic flux through the wider unit cell. Since
there exists no experimental results regarding the optical re-
sponse of magnetoexcitons in AGNRs yet, we cannot validate
these changes in the spectra. But we expect that if AGNRs
could be deposited on a nonmetallic material and aligned, the

change in the absorption spectrum could be measured in an
experimental setup similar to that described in Ref. [26]. A
common feature of both CNTs and AGNRs is that the effect of
the magnetic field on the cross-polarized absorption is negligi-
ble and only causes small changes in the spectra. In addition,
the inclusion of electron-hole interaction effects dampens the
cross-polarized absorption due to strong depolarization [53].

The changes in the parallel-polarized absorption spectra
are further elucidated in Fig. 3, which shows the smallest
eigenvalues of the BSE for (8,0) CNTs and 10-AGNRs. The
line color illustrates the optical intensity (oscillator strength)
of the state associated with the eigenvalue. Figure 3(a) shows
the lowest eigenvalues as a function of field strength for (8,0)
CNTs in a parallel field. When there is no magnetic field,
all but two of the exciton states are degenerate and only a
single state is optically active. But, as the field strength is
increased, the energies are altered and one of the dark excitons
becomes optically active. This is what we observed as the
splitting of the absorption peaks in Fig. 2. The field also lifts
the degeneracy of the exciton states, and some eigenvalues
are raised above the band-gap energy. We also see that the
band gap of CNTs is affected by the external magnetic field
and, e.g., in the case of (8,0) CNTs it decreases linearly.
Whether the band gap increases or decreases with magnetic
field depends on the family of CNTs considered [54]. Our
results show a value of bd ≈ 41 meV at B = 0 T and a
linear increase at high fields with a slope of approximately
0.54 meV/T. Comparing our results to the experimental results
in Refs. [20–26], we see a larger value of bd and a smaller
field-dependent increase in the splitting. As mentioned, this is
due to the smaller diameter of the CNTs under consideration
in this paper. If we compare to (6,5) CNTs and use the
1/d2

t and dt scaling on our results, we find bd ≈ 28 meV
and a linear increase in the splitting of 0.65 meV/T at high
fields. These values agree reasonably with experimental values
[20–26]. Figure 3(b) shows the eigenvalues for 10-AGNR in
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FIG. 3. Exciton energies as a function of magnetic field strength.
The color of the lines in both plots corresponds to the relative optical
intensity in the z direction, and the dashed red line is the band-gap
energy. (a) Exciton energies of an (8,0) CNT in a parallel field. (b)
Exciton energies of a 10-AGNR in a perpendicular field.

a perpendicular field. When the magnetic field strength is
increased, the state associated with the E11 transition decreases
in oscillator strength. Simultaneously, the oscillator strength of
a state above the gap (at about 1.14 eV) is increased. Similar to
what was observed for CNTs, the band gap of AGNRs is also
altered by the magnetic field but not in a linear manner.

We now consider the Faraday rotation and Hall conduc-
tivities. In Figs. 4 and 5, the off-diagonal conductivities
of CNTs and AGNRs, respectively, are shown. Generally,
the off-diagonal optical conductivities are identically zero if
there is no magnetic field to break time-reversal symmetry.
Additionally, the electron-hole symmetry must be broken as
clarified in Ref. [27], which is why a small overlap was
included in the TB model. This could also have been achieved
by including interactions beyond nearest neighbors in the TB
model. Assuming that the complex refractive index in Eq. (9)
is dominated by the surrounding media, the expression for
the Faraday rotation of CNTs in an aqueous solution can be
simplified to φ ≈ lReσxyρ/(2ncε0). This holds, since n � κ

for water in the photon energy range where CNTs show
absorption [55]. Consequently, the contribution of the CNTs
to the Faraday rotation is proportional to the real part of the
Hall conductivities. In Fig. 4, the real part of σxy for CNTs

FIG. 4. Independent-particle and excitonic results for the disper-
sions of the Verdet constant and the real part of the off-diagonal
conductivities of (5,0) and (8,0) CNTs for different directions of the
magnetic field and B = 10 T.

in a parallel field and the real part of σzy for CNTs in a
perpendicular field are shown, as well as the dispersion of
the Verdet constant. The nonexcitonic results for Reσxy and
the Verdet constant agree with Ref. [28]. But, in line with
expectations, the excitonic effects significantly alter the Hall
conductivities and the Faraday rotation. The plots clearly show
that excitons must be included in a correct description of the
Faraday rotation in CNTs. The other off-diagonal parts of the
conductivity tensor are zero except for σxy in a perpendicular
field, but this contribution is 3 orders of magnitude smaller
than σxy in a parallel field. Thus, even for magnetic fields that

FIG. 5. Real part of the independent-particle and excitonic off-
diagonal conductivities of 10- and 16-AGNRs in a perpendicular
magnetic field.
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FIG. 6. (a–c) Diamagnetic coefficient of the low-energy bright exciton as a function of width or chiral indices for semiconducting families
of (a) AGNRs in perpendicular fields and CNT in (b) parallel magnetic fields and (c) perpendicular magnetic field. (d–f) Exciton probability
distribution with the hole located near the center of the unit cell for (d) 10-AGNR in a perpendicular field, (e) (8,0) CNT in a parallel field, and
(f) (8,0) CNT in a perpendicular field. The top plots in (d–f) show the nearest-neighbor averaged change in the exciton probability distribution
with magnetic field.

are not perfectly aligned with the axis of the CNT, the σxy

conductivity is going to be dominated by the part related to the
parallel field.

For AGNRs in a perpendicular field, the only finite Hall
conductivity is σzy , which is shown in Fig. 5. The AGNR
off-diagonal spectra underline the fact that the inclusion
of excitonic effects is necessary for an accurate theoretical
description of the optical response of AGNRs. For the mag-
netic field strengths considered in this paper, the off-diagonal
conductivity scales linearly with field strength and the overall
shape of the off-diagonal conductivity remains unchanged.
This scaling holds true for both CNTs and AGNRs when the
direction of the magnetic field is perpendicular to the directions
of the off-diagonal element.

Finally, for the low-energy bright exciton we have evaluated
both the diamagnetic coefficient and the exciton probability
distribution. In real space, the exciton wave function can be
written in the form �exc(re,rh). We fix the position of the hole
rh at an atom in the middle unit cell, and so the exciton probabil-
ity distribution can be expressed as PB(z) = ∑ |�exc(r,rh)|2,
where we sum over contributions with identical z coordinates
and the subscript B denotes the magnetic field dependence.
The diamagnetic shift Edia is the second-order change in
exciton binding energy [56], i.e., Edia = σB2, where σ is the
diamagnetic coefficient. In Fig. 6, the diamagnetic coefficient
for different semiconducting families of AGNRs and zigzag
CNTs, the exciton probability distributions and the nearest-
neighbor averaged change in exciton probability distributions

are shown. Figure 6(a) shows the diamagnetic coefficient of
AGNRs in the presence of a perpendicular field. The negative
coefficient σ < 0 shows that the binding energy of the ground-
state exciton will increase as a function of field strength. In
contrast, Fig. 6(b) shows that CNTs in a parallel magnetic
field see a decrease in the binding energy for increasing field
strength. The explanation for this observation is found in the
geometries: The electron and hole in CNTs are restricted to
the tube, and the parallel magnetic field increases the delocal-
ization of the exciton wave function as illustrated by Fig. 6(e),
where we see a decrease in the electron concentration around
the hole. Consequently, the binding energy is decreased. On
the other hand, the magnetic field increases the localization
of the exciton wave function in AGNRs in a perpendicular
field [see Fig. 6(d)] and the binding energy is increased. The
increase in binding energy for AGNRs is in line with what is
observed for monolayer materials [34]. Figure 6(c) shows the
diamagnetic coefficient for CNTs in a perpendicular field. The
results show that the shift changes from positive to negative
as the tube radius increases. When the tube radius is large, the
effect of the perpendicular magnetic field on the excitons will
resemble that of AGNRs in a perpendicular field.

IV. SUMMARY

To summarize the work presented in this paper, we used a
TB model and subsequently solved the BSE to study the optical
properties of CNTs and AGNRs in the presence of a static
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magnetic field. In both cases, pronounced excitonic effects
are observed. We have shown that the optical absorption of
AGNRs is significantly altered by a strong perpendicular field,
while a strong parallel field alters the optical absorption of
CNTs. For CNTs we see a field-dependent splitting of the
exciton absorption peaks, caused by brightening of a dark
exciton state, while a perpendicular field gives rise to a new
absorption peak in AGNRs. We also calculated the different
nonzero Hall conductivities, including excitonic effects for
both CNTs and AGNRs. The calculations show that excitonic
effects are essential for a correct evaluation of the off-diagonal

conductivities and, hence, for the Faraday rotation. Finally, we
have illustrated how the magnetic field changes the band gap,
the exciton eigenvalues, and the localization of the exciton.
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