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Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention
in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than
100 T. We examine systems with such strains confined to finite regions (“pseudomagnetic dots”) and provide a
transparent explanation for the characteristic sublattice polarization occurring in the presence of a pseudomagnetic
field. In particular, we focus on a triaxial strain leading to a constant field in the central region of the dot. This
field causes the formation of pseudo-Landau levels, where the zeroth order level shows significant differences
compared to the corresponding level in a real magnetic field. Analytic arguments based on the Dirac model are
employed to predict the sublattice and valley dependencies of the density of states in these systems. Numerical
tight-binding calculations of single pseudomagnetic dots in extended graphene sheets confirm these predictions,
and are also used to study the effect of rotating the strain direction with respect to the underlying graphene lattice,
and varying the size of the pseudomagnetic dot.
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I. INTRODUCTION

One of the many remarkable properties of graphene is the
close connection between electronic structure and mechanical
deformation. Nonuniform deformations introduce massive
amplitude pseudomagnetic fields (PMFs) [1,2] within the
effective Dirac approximation. An intriguing consequence of
a uniform PMF is the development of Landau quantization
in the absence of magnetic fields [3–5]. The dramatic impact
of moderate deformations has lead to the concept of strain
engineering [6–8] which suggests using the PMF to manipulate
the valley degree of freedom in graphene [9–13] or to introduce
electronic band gaps [14,15].

Experiments by Levy et al. [16] and Lu et al. [17] on
nanometer sized graphene bubbles have demonstrated pseudo-
Landau levels (pLLs) corresponding to a PMF with magnitude
exceeding several hundreds of Tesla. Different approaches
have since been suggested to control the applied local strain
via direct pressure from STM tips [18], gas inflation [19–23],
or substrate structuring/interaction [24–35]. In this way, strain
engineering holds the promise of very localized and strong
PMFs together with the possibility of continuous tunability. In
this work we focus on the effect of the PMF on the local density
of states and employ an analytical form of the strain field from
which an analytical PMF can be easily derived. The formation
and magnitude of strain-induced PMFs can be studied in more
detail using molecular dynamic approaches [8,21,36,37].

Motivated by the experiments discussed above showing
pLLs arising in nanosized bubbles, we focus on such local
strain fields (“pseudomagnetic dots”) embedded within infinite
graphene sheets. We consider PMFs which give rise to pLLs
in pseudomagnetic dots and provide a simple explanation
within the Dirac approximation for the special sublattice
polarization observed in such PMF systems [4,22,38–41]. This
analysis is furthermore confirmed by numerical tight-binding
calculations using the recently developed patched Green’s
function approach [22], which allows us to calculate the local
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electronic structure without the necessity to assume a finite
sample, or to introduce periodicity. This method is used to
further investigate the interplay between strain direction and
sublattice polarization, and finite-size effects which occur in
small pseudomagnetic dots.

This paper is organized as follows. Section II briefly reviews
how lattice deformations are included within the standard
tight-binding model and also the low energy Dirac Hamil-
tonian, leading to the introduction of PMFs. Section III A
analyses general sublattice polarization in a PMF and Sec. III C
introduces the applied model for a finite pseudomagnetic
dot supporting pLLs. Section IV presents numerical results
confirming the analytics and discusses further the effect of the
strain direction and the size of the pseudomagnetic dot with
respect to the resulting pLL structure.

II. STRAIN WITHIN TIGHT-BINDING MODELS

The electronic properties of graphene are described well
using a nearest neighbor tight-binding Hamiltonian

H =
∑
〈i,j〉

tij c
†
i cj , (1)

where the sum 〈i,j 〉 runs over nearest neighbor sites. For
a pristine graphene sheet, this model is characterized by a
constant carbon-carbon hopping matrix element t0 = −2.7 eV.

When the atoms are displaced relative to each other the
bond lengths vary leading to a spatially dependent hopping
integral tij = t(r i ,rj ). The position of an atom is given
by r i = r0

i + u, where r0
i is the equilibrium position and

u(x,y) = [ux(x,y),uy(x,y),z(x,y)] is the displacement field.
In equilibrium the bond length is a0 = 0.142 nm but after
displacement it changes to dij = |r i − rj | and the hoppings
tij are correspondingly modified according to the commonly
used model [6,39,40]

tij = t0e
−β(dij /a0−1), (2)

where β = ∂ log(t)/∂ log(a)|a=a0 ≈ 3.37 [6]. Equation (2) is
generally considered to be valid for strains up to ∼20% [6],
whereas the linear expansion presented below is approximately
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valid for strains up to ∼10%–15% [4]. In Eqs. (1) and (2) we
neglect the effect of the second nearest neighbor term as it
can be shown only to cause an energy shift (strain induced
scalar potential) [4,42] and does not contribute to the strain
induced vector potential which is the focus of this study.
Furthermore, we neglect curvature/bending effects as these
are mostly important in geometries with sharp bends with
characteristic length scales comparable to the lattice constant
in graphene [21,42]. These can occur in the case of pressurized
nanobubbles as explained in Ref. [21], but generally such
effects are orders of magnitudes smaller than the direct strain
contribution [1,40].

The new bond length can also be obtained from the strain
tensor [43]

dij = 1

a0

(
a2

0 + εxxx
2
ij + εyyy

2
ij + 2εxyxij yij

)
, (3)

where r ij = r i − rj and the strain tensor is given by classical
continuum mechanics as [2]

εij = 1
2 [∂jui + ∂iuj + (∂iz)(∂j z)], i,j = x,y. (4)

We note that the connection between strain tensor and bond
length deformation is only approximate [44] but is sufficient
for the presented qualitative analysis. A more accurate compar-
ison to experimental systems can be achieved using molecular
dynamic [4,8,21].

The low energy effective Dirac Hamiltonian for deformed
graphene now takes the form [1,45]

HK ( p) = vF σ · ( p + eA), (5)

where p is the momentum measured from K , σ = [σx,σy]
with σx/y being the usual Pauli matrices, vF is the pristine
Fermi velocity, and for simplicity we have omitted explicit
reference to the band index. The Hamiltonian for the K ′
valley is obtained using the transformations σ → −σ and
A → −A such that time reversal symmetry is conserved. We
note that intrinsically there is no coupling between the valleys
within this low-energy model. Furthermore, the non-Bravais
nature of the graphene lattice was recently shown to cause a
renormalization of the gauge field in Eq. (5). However, such
renormalization does not alter the generality of the discussions
below, but becomes important for direct comparison between
experiments and PMFs [44].

The strain-induced gauge field A in Eq. (5) is given by the
two-dimensional strain tensor εij (x,y) [8,46,47],

A = − �β

2ea0

(
εxx − εyy

−2εxy

)
. (6)

We note that Eq. (6) only takes into account the first order cor-
rections in the hopping parameter. Expanding to higher orders
in the deformation leads to Fermi surface anisotropy [48,49]
and spatially dependent Fermi velocity [50–55]. Analogously
to a real vector potential, the strain-induced vector potential
generates the so-called pseudomagnetic field Bs perpendicular
to the graphene sheet [2,3]. The sign of the PMF depends on
the valley such that, in the K valley, the field is given by

Bs = ∇ × A = ∂xAy − ∂yAx, (7)

whereas the opposite sign is taken in the K ′ valley because
A → −A. Importantly, the definition of the pseudomagnetic

field is inherently connected to a first order expansion of
Eqs. (1) and (2) in the low energy Dirac model of graphene.
We stress, however, that the numerical calculations presented
below for electronic properties are based on a full tight-binding
model with hopping parameters given by Eq. (2). In this
way, the numerical calculations can be used to validate the
interpretation based in the PMF.

III. PSEUDOMAGNETIC DOTS WITH LANDAU LEVELS

If we restrict ourselves to a single valley, the gauge field in
Eq. (6) enters the Dirac Hamiltonian in the same way as a real
magnetic field does [see Eq. (5)]. We can therefore compare a
uniform PMF to a real magnetic field. In the presence of a real
magnetic field the electronic spectrum is modified giving rise
to Landau quantization [45]. However, unlike conventional
(nonrelativistic) Landau levels which have a spectrum linear
in the B field, the Landau levels in graphene follow a
characteristic

√
B|n| behavior including a zero energy Landau

level (n = 0). The analogy between real and pseudomagnetic
fields therefore suggests the existence of pseudo-Landau levels
in the presence of a constant pseudomagnetic field [3,16]

En = sgn(n)
√

2e�v2
F Bs |n|, (8)

where En is the energy for the Landau level n. The correspond-
ing magnetic length lB is given by the usual expression

lB =
√

�

eBs

. (9)

Indeed, signatures of such levels have been detected using
scanning tunneling microscopy to explore the spatial distribu-
tion of states in strained bubbles of nanometer size formed in
graphene [16,17,34].

A. Sublattice polarization

The conservation of time reversal symmetry, leading to an
opposite sign of the PMF in opposite valleys, has interesting
consequences for the sublattice occupation in the presence of a
PMF. The solution to the two-dimensional Dirac Hamiltonian
around K is a two-dimensional spinor |�K 〉 = (ψ•

K ,ψ◦
K )T ,

where • denotes the A sublattice and ◦ denotes the B sublattice.
The spinor components of valley K ′ satisfy the same type of
Dirac equation as K so that both valleys can be conveniently
collected in a four component spinor |�〉 containing both
valleys [45,56],

|�〉 =

⎛
⎜⎜⎝

ψ•
K

ψ◦
K

ψ◦
K ′

ψ•
K ′

⎞
⎟⎟⎠, (10)

following the notation of Refs. [1,45] and noting that the
sublattice sequencing is reversed between the valleys. This
definition gives rise to a four-component Dirac Hamiltonian
with two unequal subblocks(

vF σ · ( p + eA) 0
0 −vF σ · ( p − eA)

)
|�〉 = E|�〉. (11)
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However, we note that other representations using a valley
isotropic formulation with two equal blocks are also common
in the literature [56].

We first conclude from Eqs. (10) and (11) that interchanging
the valley indices inverts the role of the two sublattices,
i.e.,(ψ•

K ,ψ◦
K ) → (ψ◦

K ′ ,ψ
•
K ′). Second, we note that the transfor-

mations A → −A and p → − p interchange the role of the
subblocks in Eq. (11). A solution of the two-dimensional Dirac
equation in Eq. (5), for the K valley and positive magnetic
field, can be written in the form |�K 〉 = c1|K ,•〉 + c2|K ,◦〉,
where c1 and c2 are coefficients determining the wave vector
component on the A (•) and B (◦) sublattices, respectively,
for the solution in a real magnetic field [57]. Considering this
form of the solution, we use the symmetries discussed above
to determine the form of the wave function for different valleys
and signs of the B field:

Bs −Bs

|�K 〉 c1|K ,•〉 + c2|K ,◦〉 c2|K ,•〉 + c1|K ,◦〉
|�K ′ 〉 c2|K ′,•〉 + c1|K ′,◦〉 c1|K ′,•〉 + c2|K ′,◦〉

(12)

First, we consider the total wave function in the presence of
a real magnetic field |�re〉, which has the same sign of the B

field in both valleys,

|�re〉 =
( |�K 〉B

|�K ′ 〉B

)
. (13)

From the first column of Eq. (12) we can determine the
sublattice dependency of the wave function in the presence
of a real magnetic field. The contribution to the density of
state on the • sublattice from the K valley is expressed as
ρ•

K
∼= 〈ψ•

K |ψ•
K 〉. The total density of states on the • sublattice

is proportional to a sum of contributions from each valley,
ρ• ∼= ρ•

K + ρ•
K ′ = |c1|2 + |c2|2. A similar argument holds for

the ◦ sublattice using

〈ψ•
K |ψ•

K 〉B = 〈ψ◦
K ′ |ψ◦

K ′ 〉B = |c1|2, (14a)

〈ψ◦
K |ψ◦

K 〉B = 〈ψ•
K ′ |ψ•

K ′ 〉B = |c2|2. (14b)

We note that although the sublattices have identical LDOS
distributions, the contributions to these from the individual
valleys are swapped. A consequence of this is that the
individual sublattices are valley polarized for the zeroth
Landau level in a real magnetic field [45]. This is equivalent
to c1 = 0 in the above notation, which results in sublattice •
being occupied only by K ′-valley fermions and similarly the
◦ sublattice occupied entirely by the K valley.

Returning to the case of pseudomagnetic fields, we can
express the total wave function |�ps〉 by components from K
and K ′ with opposite sign of the B field, corresponding to the
diagonal elements of Eq. (12),

|�ps〉 =
( |�K 〉B

|�K ′ 〉−B

)
. (15)

Using Eq. (12), the density of states for each sublattice is
proportional to

〈ψ•
K |ψ•

K 〉B = 〈ψ•
K ′ |ψ•

K ′ 〉−B = |c1|2, (16a)

〈ψ◦
K |ψ◦

K 〉B = 〈ψ◦
K ′ |ψ◦

K ′ 〉−B = |c2|2. (16b)

Here we note that we get the same contribution to the LDOS
in a given sublattice from both valleys. This is in contrast
to the situation in a real magnetic field, where each valley
gives a different contribution to the LDOS within a single
sublattice. In a PMF, the overall sublattice equivalence is thus
broken when we consider the contributions from both valleys
combined—the LDOS in sublattice A is given by ρ•∼2|c1|2
and that in sublattice B by ρ◦∼2|c2|2. This gives rise to
the characteristic sublattice polarization in PMF’s noted in
Refs. [4,22,38,40]. The above analysis reveals that this is a
general feature arising due to pseudomagnetic fields causing
the two valleys to experience equal but opposite B fields.

B. Zeroth Landau level in a pseudomagnetic field

The sublattice polarization in the presence of a PMF has
a special consequence for the DOS distribution of the zeroth
order pseudo-Landau level. As the two-dimensional form of
the Dirac equation for the K valley in a PMF is identical
to that for a real field, we have c1 = 0. From Eq. (16) we
then conclude that the n = 0 pLL is entirely confined to the
B (◦) sublattice, with a density of states proportional to |c2|2
and an equal contribution from each valley. This sublattice
polarization has been noted in theoretical works [4] examining
PMFs in hexagonal graphene flakes, but here it arises as an
entirely general feature disconnected from the presence of edge
features or particular geometries. The sublattice polarization
is in contrast to the n = 0 Landau level in a real magnetic
field, where both sublattices contribute to the density but are
completely valley polarized [45].

C. Finite size pseudomagnetic dots

In the following we focus on finite strained regions
(“dots”) within an infinite sheet of graphene motivated by the
experimental realizations of graphene bubbles [16,17]. To get
a simple relation between the applied strain field and the size
of the PMF, we apply within each dot the triaxial strain field
suggested by Guinea et al. [3]. This gives rise to a constant
PMF qualitatively similar to the actual experimental strain field
exhibiting pLL features. However, we note that the presented
method is generally valid also when including out-of-plane
components in the strain field, as long as we do not have sharp
bending effects as discussed earlier [21,42,58].

The displacement field is given by

u(r,θ ) =
(

ur

uθ

)
=

(
u0r

2 sin(3θ )
u0r

2 cos(3θ )

)
, (17)

where (r,θ ) gives the positions of the atoms in polar coor-
dinates. In this way Eq. (17) gives rise to a strain along the
armchair direction as sketched in Fig. 1. From Eq. (6) we

FIG. 1. Schematic representation of the triaxial strain in Eq. (17)
relative to the crystal orientation.
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FIG. 2. The strain (black curve) and corresponding pseudomag-
netic field (dashed curve) as a function of distance from the center of
the pseudomagnetic dot with R = 15 nm. The strain is taken along
the armchair direction using the definition

dij −a0

a0
, where dij is the new

bond length and a0 is the pristine bond length. The inset shows a map
of the full PMF in the dot. This PMF distribution is generic for all
different sizes of the pseudomagnetic dots, only the maximum strain
will change for different dot sizes at the same magnitude of the PMF.

conclude that Eq. (17) leads to a constant PMF given by
Bs = 8u0

�β

2ea0
, where u0 determines the strength of the strain

field [3,59].
We note that Ref. [4] concluded that the effect of the PMF

on the LDOS is qualitatively unchanged after relaxation by
molecular dynamics. We therefore use Eq. (17) to directly
relate an analytical, continuous form of the PMF to a
discrete strain field on the graphene lattice. This can be
used to parametrize a tight-binding Hamiltonian for numerical
calculations using Eq. (2).

To ensure a finite strained region, we apply a smoothing
to the strain field in Eq. (17) using the transformation ε →
ε e−(r−R)2/2σ 2

for r > R, where R is the radius of the constant
PMF region. The resulting strain field is shown in Fig. 2 for a
15 nm sized dot together with a r-dependent PMF. The inset
in Fig. 2 shows the full PMF distribution calculated using
Eqs. (6) and (7). We clearly see a constant PMF for r < R,
with a varying PMF of opposite sign for r > R within the
smoothing region. Note that this opposite sign field within the
smoothing region arises because we apply the smoothing to
the strain tensor and not to the PMF itself. The constant PMF,
+Bs , for r < R is caused by the positive change in the strain.
However, the smoothing gives rise to a negative change in the
strain which in turn leads to a PMF of opposite sign in the
region r > R. This sign change is a general feature and is also
seen in studies using molecular dynamics to examine finite
strained regions [21].

In the calculations presented below we choose a smoothing
σ = 4 nm to ensure a sufficiently large smoothing region
which does not affect the formation of the pLLs in the central
region, as experimental results clearly show that well formed
pLLs are found in the central part of such geometries [16,17].

IV. NUMERICAL CALCULATIONS

We calculate the LDOS at every site within the strained
region based on the full tight-binding Hamiltonian using
the real-space patched Green’s function approach [22]. The
Hamiltonian of the entire system is replaced by an effective

Hamiltonian Heff = H + �B , whose dimension is the number
of sites within the finite “patch” surrounding the pseudomag-
netic dot. In this form, H describes the effects arising due
to the finite strain field and �B contains the influence of the
surrounding pristine graphene sheet on the strained region.
This allows us to treat the area containing pseudomagnetic
dot explicitly and thereby express the Green’s function of the
strained region as

G (E) = (E − H − �B)−1. (18)

The boundary self-energy �B ensures that we treat an infinite
graphene sheet without any edges, allowing us to separate
effects arising to due to the PMF with those that arise due
to edges of the sample. We can express �B conveniently
using the pristine Green’s functions along the boundary of the
calculation area [22] and these can be determined efficiently
by exploiting complex contour techniques [60]. The boundary
self-energy enters only along the edge of the calculation area
and we can treat the retarded Green’s function in Eq. (18)
through a recursive method adapted to account for this extra
self-energy as detailed in Ref. [22]. The local density of
states is finally obtained from the imaginary part of the
Green’s function as ρi(E) = −Im[Gii(E)]/π . In the presented
calculations we use calculation patches of approximately
70 000, 110 000, and 150 000 sites corresponding to R =
5, 10, and 15 nm, respectively. In the results presented below,
the density of states will be shown averaged over all the sites
on a given sublattice in the central region of a pseudomagnetic
dot, e.g., for r < R/2.

A. Pseudo-Landau levels in density of states

We consider a pseudomagnetic dot whose strain field,
calculated from Eq. (17), corresponds to a PMF of Bs = 100 T
at the dot center. The average DOS within the central region of
the dot (r < R/2) is shown in Fig. 3, and the direction of the
applied strain is shown in the inset. We notice from the inset of
Fig. 3 that the appearance of peaks in the DOS is following the√

B|n| behavior predicted by Eq. (8), which is shown by the

A

B

Bs = 100 T
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A
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S

−2−1 0 1 2
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0

0.5

√
n

En

FIG. 3. Average density of states for both the A and B sublattices
at the center of a region with radius of R = 10 nm subjected to a
triaxial strain corresponding to Bs = 100 T. The smoothing region
has a width σ = 4 nm and the curves are translated vertically with
respect to each other. The inset shows the positions of the pLLs
plotted as a function of sgn(n)

√|n|, where the dashed curve is based
on Eq. (8) using Bs = 100 T.
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FIG. 4. A contour plot of the average DOS for r < R/2 (R =
15 nm) as a function of the energy and the magnitude of the PMF.
The white dashed curves are based on Eq. (8) with the peak number
indicated.

dashed line. These pLLs are well formed for lower energies,
but tend to wash out and broaden at higher energies. This is
clearly seen when considering the contour plot in Fig. 4 where
the average DOS is indicated by the colormap as a function of
energy and magnitude of the PMF. For a given magnitude of
the PMF we see how only the first couple of pLLs are visible.
In addition, the levels at higher fields tend to deviate more from
the analytical predictions. Furthermore, from Fig. 3 we note an
important difference between these pLLs compared to regular
Landau levels: the zeroth pLL only has a finite contribution to
the LDOS on one sublattice, as also noticed in Refs. [4,13],
but not investigated in direct relation to the strain field.

The sublattice polarization of the zeroth pLL numerically
confirms the analytical considerations discussed in Sec. III A.
The sublattice with zero contribution is determined by the
vanishing coefficient (either c1 or c2), which in turn is
determined by the sign of the PMF. The solution yielding
c1 = 0 assumes a positive B field in the K valley. If this valley
experienced a negative B field, we would get a nonvanishing
contribution for the opposite sublattice. The strain direction
shown in Fig. 1 gives rise to a PMF with positive sign in the K
valley, and thus a zeroth order pLL with finite contribution
on the B sublattice. This special connection between the
sublattices, the zero order pLL, and the direction of the triaxial
strain is investigated in more detail below.

B. Rotation of triaxial strain

The triaxial strain in Eq. (17), giving rise to a constant
pseudomagnetic field [3], is along the armchair directions of
the graphene lattice. We now consider a rotation of the triaxial
strain by an angle φ from the armchair direction as illustrated
by the top schematic in Fig. 5. This leads to a generalized
PMF of the form Bs = B0 cos(3φ) with a maximum amplitude
when the strain is aligned with the armchair direction [61].
On the other hand, a triaxial strain along the zigzag direction
(φ = 30◦) does not give rise to a PMF at all. Therefore, there
are no peak features in the low energy spectrum, even if the

-0.5 -0.25 0 0.25 0.5
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60◦
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20◦

10◦

0◦

Energy [eV]
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ra
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FIG. 5. The average density of states for sublattice B at the center
of a triaxial strain corresponding to Bs = 100 T and a radius R =
15 nm. The different curves correspond to different rotational angles
φ, and are translated with respect to each other for clarity. The angular
dependence of the DOS is reversed for sublattice A, as confirmed by
our numerical calculations (not shown).

magnitude of the displacement field is the same but simply
rotated to the zigzag direction.

In Fig. 5 we show the average DOS on sublattice B as
the rotation angle of the triaxial strain field is increased away
from the armchair direction. First, we observe a decrease in
the strength of the PMF as we rotate the strain field away
from φ = 0◦ to φ = 30◦. The decreasing PMF is evident from
the lower energy of the n = 1 pLL as the angle is increased.
Furthermore, we notice the very distinct Landau peaks for
strain along the armchair directions (φ = 0◦ and φ = 60◦).
Finally, the linear DOS observed at φ = 30◦ (zigzag direction)
confirms the prediction of zero PMF for triaxial strain along
the zigzag direction. Clearly the formation of a PMF is highly
dependent on the direction of strain. This means that strain
along multiple directions (e.g., rotationally symmetric strain)
will lead to an inhomogeneous PMF where the pLLs will be
less pronounced. For inhomogeneous PMFs the DOS may
contain a combination of peaks making the identification of
pLLs difficult in these systems, even before additional factors
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such as electron scattering near aperture edges for gas-inflated
bubbles are taken into account [21,22,62].

The results in Fig. 5 show the presence of a zeroth pLL
peak for φ = 0◦,10◦,20◦ but not for φ = 40◦,50◦,60◦. The
presented calculations do not contain any sample edges which
can interact with the PMF. We therefore conclude that the
sublattice polarization, and in particular which sublattice
is occupied, is determined solely by the direction of the
triaxial strain compared to the crystalline directions. A triaxial
strain along the armchair direction can be applied in two
different ways to the graphene lattice (φ = 0◦ or φ = 60◦
in Fig. 5). Using the analysis from Sec. III we note that
the directions φ = 0◦–30◦ corresponds to +Bs while the
strain at φ = 30◦–60◦ corresponds to −Bs . Consequently,
we have c1 = 0 in Eq. (16) for φ = 0◦–30◦ and the zeroth
order pLL therefore resides on the B (◦) sublattice. On
the other hand, for the directions φ = 30◦–60◦ the zeroth
order pLL resides on the opposite sublattice. It is also clear
from the schematic in Fig. 5 that triaxial strain along the
armchair direction φ = 0◦ breaks sublattice symmetry by
displacing atoms on the A and B sublattices differently. The
other armchair possibility φ = 60◦ simply inverts the roles
of the sublattices. Meanwhile, all triaxial strains along zigzag
directions are sublattice symmetric as they are perpendicular to
bonds connecting sites on opposite sublattices and thus affect
these sites equally. The intrinsic connection between sublattice
asymmetry and pseudomagnetic fields is emphasized by this
result—a strain which breaks sublattice symmetry is required
to induce a PMF, which in turn gives rise to a sublattice
asymmetric DOS distribution.

C. Finite size effects

Finally, we investigate the influence of the size of the
pseudomagnetic dot. Figure 6 shows the LDOS on the B
sublattice for a triaxial strain giving rise to Bs = 100 T for
three different radii R = 5, 10, and 15 nm of the central
region where the PMF is constant. In each case a smoothing
of σ = 4 nm is applied. We observe that the pLL peaks are
broadened and almost disappear for the smallest dot size. Here
the Landau quantization is washed out and the remaining states
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FIG. 6. Average density of states on sublattice B at the center of
a triaxial strain corresponding to Bs = 100 T for radius R = 5, 10,
and 15 nm. Each case has a smoothing region of width σ = 4 nm and
the curves are translated vertically with respect to each other.

are expected to be unbound, as observed for the analogous real
magnetic dot [63].

To estimate when the dot becomes “too small” to support
proper Landau quantization we consider the corresponding
magnetic length for the experienced PMF. At Bs = 100 T
we get a magnetic length of lB∼2.6 nm from Eq. (9). For a
radius significantly larger than lB , we conclude from Fig. 6
that the pLLs are clearly formed. In contrast, the pLLs vanish
when the strained region is comparable to or even slightly
larger than lB . This trend is observed for the R = 5 nm case
(black) in Fig. 6. Instead, we notice here the formation of
additional states around E = 0 for small R. These are so called
quasibound states and are also observed for small real magnetic
dots with varying field strengths [64]. We conclude that the
regions of constant PMF must be bigger than the corresponding
magnetic length for pLLs to be clearly formed, even in
the case of an idealized triaxial strain along the armchair
direction.

V. CONCLUSION

We employed a combination of analytical and numerical
methods to analyze the behavior of graphene systems subjected
to PMFs. A mathematically transparent analysis, based on
the effective low energy Dirac model, was used to explain
the emergence of the sublattice polarization which has been
predicted in a wide range of systems in the presence of
PMFs [4,22,38–40]. This analysis was supported by a range
of numerical calculations within a tight-binding model, which
allowed us to confirm analytic predictions and explore finite
size and rotation effects which are expected to be relevant in
realistic systems. Special attention was given to the zeroth
pseudo-Landau level, which was shown to be sublattice
polarized. This is in contrast to the valley polarization of
individual sublattices expected for the case of a real magnetic
field. The occupied sublattice in the zeroth level for PMFs was
furthermore shown to depend on the relative orientation of
the strain and crystalline directions. Numerical calculations
performed in the absence of edges allowed us to confirm
that this strong sublattice polarization effect emerges entirely
from pseudomagnetic considerations. The strong rotational
dependence of PMFs and their induced effects suggests that
experimental systems with strains from multiple directions,
such as circularly symmetric gas-inflated bubbles, will display
inhomogeneous behavior that will be more difficult to charac-
terize. In addition, we studied the breakdown of the analytic
prediction of pLL for small dot sizes. Here we observe a
broadening of the pseudo-Landau peaks which disappear when
the dot size is decreased towards the corresponding magnetic
length. Understanding these limitations and effects are impor-
tant in order to guide the exploitation of pseudomagnetic dots
in strain engineering of graphene [8,21].
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Phys. Rev. B 90, 041411 (2014).

[40] D. Moldovan, M. Ramezani Masir, and F. M. Peeters, Phys. Rev.
B 88, 035446 (2013).

[41] C. Poli, J. Arkinstall, and H. Schomerus, Phys. Rev. B 90,
155418 (2014).

[42] E.-A. Kim and a. H. Castro Neto, Europhys. Lett. 84, 57007
(2008).

[43] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Third
Edition: Volune 7 (Course of Theoretical Physics) (Springer,
Berlin, 1986).

[44] D. Midtvedt, C. H. Lewenkopf, and A. Croy,
arXiv:1509.02365.

[45] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
[46] H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
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