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Electron and phonon drag in thermoelectric transport through coherent molecular conductors
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We study thermoelectric transport through a coherent molecular conductor connected to two electron and two
phonon baths using the nonequilibrium Green’s function method. We focus on the mutual drag between electron
and phonon transport as a result of ‘momentum’ transfer, which happens only when there are at least two phonon
degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation,
we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related
to two other phenomena: (1) adiabatic charge pumping through a coherent conductor; (2) the current-induced
nonconservative and effective magnetic forces on phonons.
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I. INTRODUCTION

The possibility to engineer electron and phonon transport
independently in nanostructures makes them an ideal candidate
for thermoelectric applications, the conversion of heat to
electricity, and vice versa [1–11]. Thermoelectric transport in
quantum wells, wires, and dots has been the focus of intense
study in the past decades. Recently, it has become possible
to measure the thermopower of molecular junctions, the
extreme minimization of electronics [6,7,9,10]. Although still
in its infancy from an application point of view, academically
thermopower has proven useful as a complementary tool to
explore the transport properties of molecular devices. For
example, the sign of the thermopower gives information about
the relative position of the electrode Fermi level within the
HOMO-LUMO gap of the molecule [6,7,9,12]; the quan-
tum interference effect [13–16] and many-body interactions
[17–20] also show their signatures in the thermopower.

The interaction between electrons and vibrations within
the molecule couples charge and phonon heat transport. The
signature of this coupling in electrical current has been used as
a spectroscopy tool to unambiguously identify the molecule.
However, much of the early theoretical work on thermoelectric
transport in molecular conductors treats electron and phonon
transport separately, within the linear regime. Recently, there
are more attempts trying to include the electron-phonon(e-ph)
interaction, extend the analysis to the nonlinear regime
[12,21–37], and consider multiterminal transport [38–44].
The e-ph interaction modifies the electronic transmission and
consequently the thermopower. Extending to the nonlinear
regime also helps to make connection with the current-induced
heating and heat transport in molecular devices.

In this paper, we study the nonequilibrium thermoelectric
transport through a model device, connected to two electron
and two phonon baths, including the e-ph interaction within the
device. We use the nonequilibrium Green’s function (NEGF)
method to take into account the effect of e-ph interaction within
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the lowest order perturbation [45], assuming the interaction
is weak. Thus, our approach does not apply to molecular
junctions that couple weakly to the electrodes [24,28,34].
In the linear regime, we derive the thermoelectric transport
coefficients including the e-ph interaction. We pay special
attention to the drag coefficients, whereby a temperature
difference between the phonon baths drives an electrical
current between the electron baths, and vice versa. The
drag effect has been well studied in translational invariant
systems but less considered in a nanoconductor. We make
connections between electron/phonon drag and other related
effects, e.g., the current-induced nonconservative, effective
magnetic force [46–48], and adiabatic pumping in a coherent
conductor [49,50]. These effects can only emerge in a
nanoconductor with at least two phonon degrees of freedom.
This makes our study different and complementary to most
other works [24,28,34,38,51]. Furthermore, we extend the
analysis to the nonlinear regime, look at the drag effect on
energy transfer between electrons and phonons, and discuss
the possibility of driving heat flow using an electric device or
charge transport using heat [38,51].

The paper is organized as follows. In Sec. II, we introduce
our model setup and present analytical results for the charge
and heat currents focusing on the electron/phonon drag effect.
In Sec. III we analyze a simple one-dimensional (1D) model
system to illustrate that the drag effect shares the same origin
as that in a translational invariant lattice and can be understood
as a result of the momentum transfer between electrons and
phonons. We also provide numerical results for the model
system. Section IV gives concluding remarks. Finally, the
details of the derivation are given in Appendices A–C.

II. THERMOELECTRIC TRANSPORT

A. System setup and Hamiltonian

We consider a model device containing an electronic (He)
and a phononic (vibrational) part (Hp), with interactions
between them Hep. The electronic part is linearly coupled
to two separate electron baths (L,R), so does the vibrational
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FIG. 1. Schematic representation of the model system considered
in this paper and its different possible situations: (a) By applying a
voltage bias, heat can be extracted from one of the phonon baths,
although they remain at the same temperature. (b) By applying a
temperature difference between the two phonon baths, an electrical
current can be generated between the two electron baths. This
contributes with a phonon-drag part to the thermopower.

part (Fig. 1). The coupling matrix is denoted by V α
σ . The

Hamiltonian of the entire system is written as

H =
∑

σ=e,p

Hσ + Hep +
∑

α=L,R;σ=e,p

(
Hα

σ + V α
σ

)
. (1)

The electron and phonon subsystem (device plus left and
right baths) are noninteracting. For example, the phonons
are described within the harmonic approximation, and the
electrons within a single particle picture. We assume no direct
coupling between these baths. The only many-body interaction
is Hep within the device. In a tight-binding description of the
electronic Hamiltonian, it can be written as

Hep =
∑
i,j,k

Mk
ij c

†
i cjuk, (2)

where c
†
i (cj ) is the electron creation (annihilation) operator

for the i(j )th electronic site, and uk is the mass-normalized
displacement away from the equilibrium position of the kth
degrees of freedom, i.e., uk = √

mkrk , with mk the mass of
the kth degree of freedom, and rk its displacement away
from equilibrium position. Mk

ij is the e-ph interaction matrix
element. We consider spinless electrons throughout this paper.

To calculate the electrical and heat current, we assume
the e-ph interaction is weak, and keep only the lowest order
self-energies [52]. We perform an expansion of the Green’s
functions and current up to the second order in M , following
the idea of Ref. [45]. For example, the lesser Green’s function
is expanded as

G< ≈ G<
0 + Gr

0�
<
epG

a
0 + Gr

0�
r
epG

r
0�

<
LRGa

0

+Gr
0�

<
LRGa

0�
a
epG

a
0, (3)

with �LR = �L + �R the self-energy due to coupling to
electrodes, �ep self-energy due to e-ph interaction, and G0 the
noninteracting electron Green’s function. Similar expression
holds for G> and D>,<. The details of the method can be
found in Appendix A and Refs. [21,45,52].

B. Linear transport coefficients

In the linear response regime, we introduce an infinitesimal
change of the chemical potential or temperature at one of the
baths, α, e.g., μα = μ + δμ, T α

σ = T + δTσ , with μ and T the
corresponding equilibrium values. We look at the response of
the charge and heat current due to this small perturbation. Up
to the second order in M , the result is summarized as follows:⎛

⎜⎝
Iα

e

J α
e

J α
p

⎞
⎟⎠ =

⎛
⎜⎝
L0 L1 Q̃0

L1 L2 Q̃1

Q0 Q1 Kp

⎞
⎟⎠

⎛
⎜⎝

δμ

δTe
T

δTp

T

⎞
⎟⎠. (4)

We define the positive current direction as that elec-
trons/phonons go from the bath to the device, and Iα , J α

e ,
J α

p are the electrical current and the heat current carried by
electrons and phonons, respectively. The expressions for the
coefficients L and Kp are given in Appendix A. Both include
three contributions. The first term is the elastic Landauer
result. The second term is the (quasi)elastic correction due
to change of the electron spectral function. The last one is the
inelastic term. The effect of each part in L on the conductance
and Seebeck coefficient have been analyzed in Ref. [52] for
a single level model. Qn and Q̃n are the drag coefficients.
We use the following convention for the drag effect: The
electron drag effect corresponds to generating phonon flow
due to electron flow, while the phonon drag corresponds to the
opposite process. We can write Qn and Q̃n as

Q̃n = −
∑

β

∫
dω

2π
�ωTr

[
	

(n)
α̃β(ω)Aα(ω)

]
∂�ωnB(�ω,T ), (5)

Qn = −
∑

β

∫
dω

2π
�ωTr

[
	

(n)
αβ (ω)Ãα(ω)

]
∂�ωnB(�ω,T ), (6)

where nB(�ω,T ) = [exp( �ω
kBT

) − 1]
−1

is the Bose-Einstein
distribution function. Throughout the paper, we use Tr[·] for
trace over phonon indices, tr[·] for trace over electronic degrees
of freedom, Ãα/Aα is the (time-reversed) phonon spectral
function [Eq. (A8)], and 	

(n)
α̃β(ω) is defined as

	
(n)
α̃β(ω) =

∫
dε

2π
(ε − μα)nXα̃β(ε,ε−)

× [
f

(
ε,μα,T α

e

) − f
(
ε−,μβ,T β

e

)]
, (7)

205404-2



ELECTRON AND PHONON DRAG IN THERMOELECTRIC . . . PHYSICAL REVIEW B 93, 205404 (2016)

Xα̃β(ε,ε−) = tr[MÃα(ε)MAβ(ε−)], (8)

with ε− = ε − �ω. In the definition of Xα̃β and 	
(n)
α̃β , α̃

means we need to use the time-reversed electron spectral
function Ãα [Eq. (A7)]. 	(0)(ω) is the coupling-weighted
electron-hole pair density of states (DOS), introduced in our
previous work [47,53,54]. In the linear regime, the Fermi
distribution f (ε,μα,T α

e ) = f (ε,μ,T ) is the same for both

electrodes, with f (ε,μ,T ) = [exp( ε−μ

kBT
) + 1]

−1
. Hereafter, the

summation of β is over L and R, and the integration is from
−∞ to +∞ if not specified explicitly. In the linear regime,
without magnetic field, we have (Dr )T = Dr and (Gr )T = Gr .
This leads to Qn = Q̃n, which ensures the Onsager symmetry
(Appendix B).

For one electronic level coupled to one phonon mode, we
can check that our result for Q0/Q1 is equivalent to that of
Ref. [38] (Appendix C). In order for Q0/Q1 to be nonzero,
we need some special design of the system, e.g., asymmetric
coupling to the left and right electron bath [38].

Here, we focus on the case where there are two or more
phonon modes. For Q̃0, we can do an expansion over the energy
dependence of the electron spectral function. The zeroth order
contribution is

Q̃(0)
0 =

∑
β

∫
dω

4π2
(�ω)2∂�ωnB(�ω,T )

× Tr[ImXα̃β(μ,μ)ImAα(ω)], (9)

with Re and Im meaning real and imaginary part, respectively.
In order for Q̃(0)

0 to be nonzero, the device needs to have at
least two vibrational modes. This follows from the fact that
Aα is Hermitian.

Relation with adiabatic pumping and current-induced forces

Now we write Q̃(0)
0 in terms of the unperturbed retarded

(advanced) electron scattering states, coming from (leaving
to) the left |ψL〉 (|ψ̃L〉) or right |ψR〉 (|ψ̃R〉) electrode

Xkl
α̃β(ε,ε−) =

∑
m,n

〈
ψn

β (ε−)
∣∣Mk

∣∣ψ̃m
α (ε)

〉〈
ψ̃m

α (ε)
∣∣Ml

∣∣ψn
β (ε−)

〉
.

(10)

Here, m and n are channel indices. The retarded and advanced
scattering states including e-ph interaction are generated from

|
α(ε)〉 = |ψα(ε)〉 + GrHep|ψα(ε)〉, (11)

|
̃α(ε)〉 = |ψα(ε)〉 + GaHep|ψα(ε)〉. (12)

They are normalized as

〈
α(ε)|
β(ε′)〉 = 2πδα,βδ(ε − ε′), (13)

and so is |ψα〉. From the definition of the scattering matrix

2πδ(ε − ε′)Smn
αβ = 〈


̃m
α (ε′)

∣∣
n
β (ε)

〉
, (14)

and Eqs. (11) and (12), we get

Smn
αβ = δα,βδm,n − i

〈
ψm

α

∣∣Hep

∣∣
n
β

〉
. (15)

Here, Smn
αβ is the matrix element connecting the incoming

wave from the nth channel in electrode β to the mth outgoing

channel in electrode α. Taking the derivative over the phonon
displacement yields

∂kS
mn
αβ = −i

〈

̃m

α

∣∣Mk
∣∣
n

β

〉
. (16)

Substituting Eq. (16) into Eq. (10), taking the ω → 0 limit, we
obtain

Im
∑

β

tr[∂lSαβ∂kS
†
βα] = Im

∑
β

Xkl
α̃β + · · · . (17)

The trace is over the channel indices. We have kept only the
second order terms.

Equation (17) makes connection with the Brouwer for-
mula for adiabatic pumping [50,55,56]. Here, a temperature
difference between the left and right electrode breaks the
population balance between the phonon scattering states from
these two baths, e.g., there are more phonon waves traveling
in one direction, determined by the temperature bias. When
the phonon wave goes through the device, it produces phase-
shifted oscillating potential felt by the electrons. In the space
of the atomic coordinates, the trajectory may form a closed
loop, generating pumped electrical current.

The opposite of this effect is that an electrical current
generates a directed phonon heat current. The term governing
this effect is XLR . The same term appears in the expressions for
the current-induced nonconservative and effective magnetic
forces [46–48,53,57], e.g., Eqs. (56)– (61) in Ref. [53]. This
shows that the electron drag effect is closely related to these
novel current-induced forces.

C. Nonlinear regime

When the applied temperature or voltage bias is large, addi-
tional energy transfer between the electron and phonon subsys-
tem takes place. We consider two situations: electrical-current-
driven heat flow in the isothermal case and temperature-driven
electrical current at zero voltage bias.

1. Electrical-current-driven heat flow (Te = Tp = T, eV �= 0)

In the first setup, all the baths are at the same temperature
(T ), but the electron baths are subject to a nonzero voltage
bias (eV = μL − μR). This is the most common situation in a
working electronic device [Fig. 1(a)]. For large bias, there will
be energy transfer from the electron to the phonon subsystem
(see Appendix A for the derivation)

Q=
∑
α,β

∫
dω

2π

∫
dε

2π
�ωTr[tr[MAα(ε)MAβ(ε + �ω)]A(ω)]

× fβ(ε + �ω)(1 − fα(ε))(nB(�ω,T ) + 1). (18)

Since all the baths are at the same temperature, we have
omitted it in this subsection. Equation (18) is a result of
balance between phonon emission and adsorption processes
(Fig. 2). For ω > 0, it represents process where an electron
in electrode β combines with a hole at lower energy in α,
accompanied by a phonon emission process. For ω < 0, it
represents the opposite process, where an electron-hole pair
is created between α and β by adsorbing one phonon. While
the Fermi distributions fβ(1 − fα) ensures that the phonon
emission process happens only when the applied bias eV is
larger than the phonon energy �ω, the Bose function nB + 1
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(1)

(2)

(3)

(4)

FIG. 2. Electron-hole pair excitation processes. (1) and (2) are
intraelectrode processes. (3) and (4) are interelectrode ones. At T = 0,
(1)–(3) are not possible, and (4) is possible only when the applied
bias is larger than the phonon energy.

prohibits phonon adsorption process at T = 0. This equation
can also be written in a compact form as

Q=
∫

dω

2π
�ωTr

[
	

(0)
LR(ω)A(ω)

]
�nB(�ω,T ; �ω − eV,T ),

(19)

with

�nB(�ω1,T1; �ω2,T2) = nB(�ω1,T1) − nB(�ω2,T2). (20)

Energy transfer within the device breaks the balance between
the device and bath phonons. As a result, the extra energy is
further transferred to the two phonon baths. The heat current
flowing out of the phonon bath α is given by the minus of
Eq. (19) with Ã replaced by Ãα , such that

JL
p + JR

p + Q = 0, (21)

as required by the energy conservation.
In fact, we can split J α

p into two parts according to their
symmetry upon bias reversal J α

p = J α,h
p + J

α,p
p , where J α,h

p

and J
α,p
p are even and odd functions of eV . We call them the

Joule heating and Peltier drag current, respectively. Assuming
constant electron DOS, we get

J α,h
p ≈ −

∫ +∞

0

dω

4π2
h(�ω)Tr[ReXLR(μ,μ)ReÃα(ω)], (22)

J α,p
p ≈

∫ +∞

0

dω

4π2
p(�ω)Tr[ImXLR(μ,μ)ImÃα(ω)]. (23)

The two coefficients are

h(�ω) ≡
∑
s=±1

�ω(�ω + s eV )�nB(�ω + seV ; �ω), (24)

p(�ω) ≡
∑
s=±1

s �ω(�ω + s eV )�nB(�ω + seV ; �ω). (25)

The Joule current corresponds to the energy transfer from the
electrons to the phonons in Eq. (19), i.e., JL,h

p + JR,h
p + Q =

0. But the drag current is related to the Q0 coefficient in
Sec. II B and depends on the direction of current flow, i.e.,
J

L,p
p + J

R,p
p = 0. This relation follows from the fact that

ImA = ImÃ = ImÃL + ImÃR = 0. We will see later that it
is due to momentum transfer between electrons and phonons.
In the limit of high temperature (kBT 
 eV ± �ω), we

have h(�ω) → 0, and p(�ω) → 2eV kBT . The drag part will
dominate over the Joule heating part. In this case, it is possible
to extract heat from one of the phonon baths by applying a
voltage bias, similar to a refrigerator, as shown in Fig. 1(b).

We note that in Ref. [54], we have studied the same
problem using the semiclassical generalized Langevin equa-
tion approach. Similar equations were derived there, and
the asymmetric heat flow was attributed to the asymmetric
current-induced forces. These two complementary analyses
shows that the two effects are closely related.

2. Temperature-driven electric current (μL = μR, Te �= Tp)

In the second setup, we apply a temperature difference
between the electron and phonon subsystem at zero voltage
bias. This drives an electrical current within the device [see
Eq. (A19)]

Iα = e
∑
β,γ

∫
dω

2π
Tr

[
	

(0)
α̃β̃

(ω)Aγ (ω)
]
�nB

(
�ω,T γ

p ; �ω,Te
)
.

(26)

Here, ᾱ means the lead different from α. There are two possible
situations here. The first one is that the phonon baths are at the
same temperature (Tp) but different from that of electron baths
(Te). We can consider the two phonon baths as an effective
single bath. The four-terminal setup reduces to a three-terminal
one, and equation (26) simplifies to

Iα = e
∑

β

∫
dω

2π
Tr

[
	

(0)
α̃β̃

(ω)A(ω)
]
�nB(�ω,Tp; �ω,Te).

(27)

The three-terminal setup has been considered in Ref. [38].
For a single electronic level coupling to one phonon mode,
equation (27) agrees with result therein. Due to the temperature
difference between the electron and phonon systems, there
will be energy flow between them. It has been analyzed in
Sec. III C of Ref. [52]. A similar problem has been considered
in Refs. [58–61]. Here we focus on the other situation, where
we apply a temperature difference between the two phonon
baths [Fig. 1(b)]. This generates a phonon-drag electrical
current. For constant electronic DOS, we get

Iα ≈ e

∫
dω

4π2
�ωTr[ImXα̃ ˜̄α(μ,μ)ImAᾱ(ω)]

×�nB

(
�ω,T α

p ; �ω,T ᾱ
p

)
, (28)

extending the result in Sec. II B to the nonlinear regime.

III. MODEL CALCULATION

A. 1D model and qualitative analysis

For the ease of understanding the general results in Sec. II,
we now study a simple 1D atomic chain. The electronic
Hamiltonian takes the tight-binding form, with the hopping
matrix element −t ,

He = −t
∑

|i−j |=1

c
†
i cj . (29)

The electron dispersion relation is εk = −2t cos k, where k is
the 1D wave vector [Fig. 3(d)]. We have set the lattice distance
a = 1. For this 1D lattice, due to translational invariance, the
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t ( ) t ( ) t (u) t (u) t ( )-t (u)
(a)

-t (u) -t (u) -t (u) -t (u)

-t0
(b)

-t (un) -t (δu) -t0-t (un+1)

(c) (d)n n+1

K
0

kLkR

k

FIG. 3. (a) A model 1D lattice, where the electron nearest-
neighbor hopping amplitude t(u) depends on the atomic displacement
u. (b) Localized e-ph interaction at sites n and n + 1, δu = un+1 − un.
(c) Phonon dispersion relation. (d) Electron dispersion relation.
Blue and red lines depict phonon emission processes due to e-ph
interaction. An electron at state kL is scattered by phonons to an state
kR and emit one phonon, whose wave vector is denoted by the vertical
lines in (c). Depending on the value of kL and kR , the emitted phonon
may travel to the right (blue line, normal process) or the left (red
line, Umklapp process). Normally, the electron energy is much larger
than the phonon energy, so in this figure we have ignored the electron
energy change.

electron Green’s function in real space only depends on the
distance between different sites j and l, n = l − j ,

Gr
0,j l(ε) = ei|kL(ε+)n|

2it | sin kL(ε+)| . (30)

Hereafter, we take kL(ε+) > 0 and kR(ε+) = −kL(ε+) < 0 as
the wave vectors corresponding to the scattering state with
energy ε+ = ε + i0+, coming from the left and the right,
respectively. The corresponding spectral functions, defined
within the electron energy band, are

AL,jl(ε) = Ã∗
L,jl(ε) = eikL(ε+)n

2t |sinkL(ε+)| , AR(ε) = A∗
L(ε).

(31)

The ions are connected by 1D springs with spring constant
K0

Hp =
∑

j

(
1

2
u̇2

j + K0u
2
j

)
− 1

2
K0

∑
|i−j |=1

uiuj . (32)

The phonon retarded Green’s function is

Dr
0,j l(ω) = ei|q(ω+)n|

2iK0|sinq(ω+)| . (33)

q(ω+) is the phonon wave vector, corresponding to frequency
ω+ = ω + i0+. The phonon dispersion relation is ωq =
2
√

K0|sin q

2 | [Fig. 3(c)]. The phonon spectral function, defined

within the phonon band, is

AL,jl(ω) = Ã∗
L,jl(ω) = eiqL(ω+)n

2K0|sinqL(ω+)| , AR(ω) = A∗
L(ω).

(34)

Here, qL(ω+) > 0 is the phonon wave vector corresponding to
scattering wave coming from the left.

To consider the e-ph interaction, we assume the atomic
motion modifies the hopping matrix element linearly, i.e.,

Hep = −m
∑

j

uj (c†j cj+1 − c
†
j cj−1 + H.c.). (35)

For a phonon emission process through electronic transi-
tion from the initial left scattering states |ψL(kL)〉 to the
final right scattering state |ψR(kR)〉, only phonon mode
that fulfills the energy and crystal-momentum conservation
can be excited, e.g., 〈ψL(kL)|Mq |ψR(kR)〉 ∼ δ(kL − kR − q +
G)δ(ε(kL) − ε(kR) − �ω(q)). Here, G is a reciprocal lattice
vector. It is this selection rule that gives the electron/phonon
drag effect in a translational invariant lattice [Figs. 3(c)–3(d)].

To show that similar mechanism works in a coherent
nanoconductor, we artificially switch off the e-ph interaction,
except at two sites, e.g., we only consider coupling to un

and un+1 [Fig. 3(b)]. That is, in Eq. (35), the sum over j

only applies to these two sites. Then, only nearest hopping
between four sites, {n − 1,n,n + 1,n + 2}, are modified by
atomic motion. We set these four sites as our device, and all
other sites as electron and phonon baths L and R. In this
case, the condition of energy conservation is still valid, but
the conservation of crystal momentum is not, since the local
e-ph interaction breaks the translation invariance. The matrix
element is

〈ψL(kL)|Mq |ψR(kR)〉
= − m

�
√|vLvR|e

−ikL [1 + ei(q−kL+kR )][1 + ei(kL+kR)]

× [1 − e−i(kL−kR )]. (36)

Here, vL/R is the group velocity of the L/R scatter-
ing state with wave vector kL/R . We can see that the
squared scattering matrix element |〈ψL(qL)|Mq |ψR(qR)〉|2 
=
|〈ψL(qL)|M−q |ψR(qR)〉|2, their difference

�MLR ∝ sin φ sin q. (37)

We have defined φ = kL − kR . This means the electrons have a
different probability of exciting left and right traveling phonon
waves. The difference depends on the electron and phonon
wave vectors. For example, similar to the 1D lattice, electrons
with ε < 0 (below half filling) preferentially emit phonons
traveling to the right. From another point of view, the holes
dominate the inelastic transport [54]. This breaks the left-
right symmetry, and generates drag effect in a nanoconductor,
although the crystal-momentum selection rule is not valid.

To make connection with the NEGF approach in Sec. II,
we can calculate the real space e-ph interaction matrix at
sites n and n + 1, and find Mn+1

LR ≡ 〈ψL(kL)|Mn+1|ψR(kR)〉 =
e−iφ〈ψL(kL)|Mn|ψR(kR)〉. So,

X
n,n+1
LR (ε(kL),ε(kR)) = ∣∣Mn

LR

∣∣2
(

1 e−iφ

eiφ 1

)
. (38)
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Making use of Eq. (34), we get, for given electron (kL, kR) and
phonon wave vectors (q), that satisfy the requirement of energy
conservation, ε(kL) = ε(kR) + �ω(q), the electron ‘drag’ term
becomes

Tr[ImXLR(ω)ImÃL(ω)] ∝ sin φ sin qL(ω+). (39)

This is consistent with our scattering analysis and shows that
the drag effect we discuss here shares the same origin as that
in a lattice system.

B. Numerical results

Now we present our numerical results for the 1D model
with localized e-ph interaction using the formulas developed
in Sec. II. In Fig. 4, we show the calculated phonon drag
contribution to the Seebeck coefficient. The parameters, given
in the figure caption, are chosen to closely resemble that
of a single atom gold chain [62–65]. The single electron
contribution to the Seebeck coefficient vanishes since we have
a perfect electron transport channel. The drag coefficient is
zero at EF = 0 due to electron-hole symmetry [54]. But once
moving to EF = −1 eV, the symmetry is broken, and we get
a nonzero value. Positive S means the holes dominate over
the electrons in the inelastic scattering process. The saturation
of the S with T can be understood from Eq. (9), i.e., at high
temperature, Q̃0 ∝ T , while S ∝ Q̃0/T .

Figures 5 and 6 show the results for the setup in Fig. 1(a).
The temperatures of all the baths are the same, while there is a
voltage bias applied between the two electron baths. We define
the power as Q in Eq. (19). Figure 5 shows its dependence on
the voltage bias at different temperatures and Fermi levels. The
onset of power flow at the phonon frequency is clear at 4.2 K,
but smoothed out at 300 K. The inset shows the corresponding
conductance drop at the phonon threshold for 4.2 K. Although
the magnitude of the power changes slightly, the general
behavior does not depend on the position of the Fermi level.
All these results agree with previous studies [21,66,67].
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FIG. 4. Phonon drag contribution to the Seebeck coefficient at
different chemical potentials. The parameters used are as follows:

t = 1 eV, K0 = 0.02 eV/(Å
2
u), K ′

0 = 0.5K , m = 0.15 eV/(Å
√

u).
Here, K ′

0 is the spring constant connecting the device to the left and
right phonon baths.
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FIG. 5. Energy current going from electron to phonons (power)
as a function of voltage bias at different temperatures and Fermi
levels from Eqs. (19)–(21). All the electron and phonon baths are
kept at the same temperature, see also Fig. 1(b). The inset shows the
differential conductance (dI/dV ) at EF = 0 (red, solid) and −1 eV
(green, dashed) at 4.2 K.

Next, we show in Figs. 6(a) and 6(b) that the heat flows
into the left and right phonon baths are drastically different at
the two Fermi levels. For EF = 0, the heat flow into the two
phonon baths are symmetric [Figs. 6(a) and 6(b)]. But when
we move to EF = −1.0 eV, they show strong asymmetry, due
to the drag part of the heat current [Figs. 6(c) and 6(d)]. It
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FIG. 6. Heat current carried by phonons, going into the left (red,
solid) and right (black, dashed) phonon bath. (a),(b) EF = 0, (c)–(f)
EF = −1 eV. (a)–(d) Calculated from Eqs. (19)–(21). We also show
the results calculated from the generalized Langevin equation (GLE)
approach (Ref. [53]) (e) and the self-consistent Born approximation
(SCBA) (Ref. [21]) (f).
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depends on the phase of the electron wave function, which in
our case could be tuned by changing the chemical potential.
At EF = −1 eV, the probability of emitting right traveling
phonons is larger, resulting in larger heat current into bath R.
This is the same with the lattice system [Figs. 3(c) and 3(d)].
Comparing results at T = 4.2 and 300 K, we find that the
asymmetry increases with temperature. Interestingly, at 300 K,
we can extract heat from the right phonon bath by applying
the voltage bias. This is a prototype atomic ‘refrigerator.’ The
results calculated using the generalized Langevin equation
(GLE) approach [53] [Fig. 6(e)] and self-consistent Born
approximation (SCBA) [21] [Fig. 6(f)] show that, although
the magnitude of the heat current changes, the qualitative
conclusions remain no matter which approximation we use.

IV. CONCLUSIONS

In conclusion, by assuming linear coupling between elec-
trons and phonons in a four-terminal nanodevice, we have
shown that in the linear transport regime, in addition to

modifying the normal thermoelectric transport coefficients,
e-ph interaction also introduces new drag type coefficients.
The drag effect can be traced back to the momentum transfer
between the electrons and phonons. We have shown that
it is closely related to the adiabatic pumping and current-
induced forces in a coherent conductor. So in principle
phonon-drag thermopower behaves as an alternative way of
probing these current-induced forces. The expressions derived
in this paper can be readily applied to the realistic structures
by combining these with first-principles electronic structure
calculation [68–70]. Finally, we note that one could also
study similar drag effect in Coulomb coupled all-electronic
devices [42–44].
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APPENDIX A: DETAILS OF THE DERIVATION

Our starting point is the Meir-Wingreen formula for charge and heat current

Iα = e

�

∫
dε

2π
Tr[G>(ε)�<

α (ε) − G<(ε)�>
α (ε)], (A1)

J α
e = 1

�

∫
dε

2π
(ε − μα)Tr[G>(ε)�<

α (ε) − G<(ε)�>
α (ε)], (A2)

J α
p = −1

�

∫
dω

4π
�ωTr[D>(ω)�<

α (ω) − D<(ω)�>
α (ω)]. (A3)

The expansion is performed by substituting Eq. (3) and similar expression for D>,< into Eqs. (A1)–(A3). The electrical current
injected from α can be written as

Iα = e

�

∫
dε

2π

(
tr
[
Gr

0�
>
LRGa

0�
<
α − Gr

0�
<
LRGa

0�
>
α

] + tr
[
Gr

0�
r
epG

r
0�

>
LRGa

0�
<
α − Gr

0�
r
epG

r
0�

<
LRGa

0�
>
α

]

+ tr
[
Gr

0�
>
LRGa

0�
a
epG

a
0�

<
α − Gr

0�
<
LRGa

0�
a
epG

a
0�

>
α

] + tr
[
Gr

0�
>
epG

a
0�

<
α − Gr

0�
<
epG

a
0�

>
α

])
. (A4)

Similarly, the heat current from phonons injected from α:

J α
p = −

∫
dω

4π
�ω

(
Tr

[
Dr

0�
>
LRDa

0�<
α − Dr

0�
<
LRDa

0�>
α

] + Tr
[
Dr

0�
r
eD

r
0�

>
LRDa

0�<
α − Dr

0�
r
eD

r
0�

<
LRDa

0�>
α

]

+ Tr
[
Dr

0�
>
LRDa

0�a
eD

a
0�<

α − Dr
0�

<
LRDa

0�a
eD

a
0�>

α

] + Tr
[
Dr

0�
>
e Da

0�<
α − Dr

0�
<
e Da

0�>
α

])
, (A5)

with �(ω) being the phonon self-energy. We have omitted the argument ε or ω in the Green’s functions or self-energies.

1. Linear coefficient: L
We group the current into three terms, giving three coefficients,

Ln =
3∑

i=1

L(i)
n . (A6)

Using the expressions for the DOS and time-reversed DOS of electrons and phonons originating from lead α,

Aα(ε) = Gr
0(ε)�e

α(ε)Ga
0(ε), Ãα(ε) = Ga

0(ε)�e
α(ε)Gr

0(ε), A(ω) = AL(ω) + AR(ω), (A7)

Aα(ω) = Dr
0(ω)�p

α(ω)Da
0 (ω), Ãα(ω) = Da

0 (ω)�p
α(ω)Dr

0(ω), A(ω) = AL(ω) + AR(ω), (A8)
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they can be written as

L(1)
n = 1

�

∫
dε

2π
(ε − μ)ntr[Aᾱ(ε)�α(ε)]f ′(ε), L(2)

n = 1

�

∫
dε

2π
(ε − μ)ntr[�Aᾱ(ε)�α(ε)]f ′(ε), (A9)

L(3)
n = i

�

∫
dε

2π
(ε − μ)ntr[(�>

ep(ε) − �<
ep(ε))Ãα(ε)]f ′(ε). (A10)

We have defined f ′(ε) = − ∂f (ε)
∂ε

. L(1)
n is the single electron Landauer result. L(2)

n is due to corrections to the electron DOS

�Aᾱ(ε) = Gr
0(ε)�r

ep(ε)Aᾱ(ε) + Aᾱ(ε)�a
ep(ε)Ga

0(ε). (A11)

L(3) is the inelastic term. The effect of e-ph interaction on the Ln in a single level model has been studied in Ref. [52].

2. Linear coefficient: K
The phonon thermal conductance has similar form

Kp =
3∑

i=1

K(i)
p (A12)

with

K(1)
p =

∫
dω

4π
�ωTr

[
Aᾱ(ω)�α

p (ω)
]∂nB

∂Tp
Tp, K(2)

p =
∫

dω

4π
�ωTr

[
�Aᾱ(ω)�α

p (ω)
]∂nB

∂Tp
Tp, (A13)

K(3)
p = i

∫
dω

4π
�ωTr[(�>

ep(ω) − �<
ep(ω))Ãα(ω)]

∂nB

∂Tp
Tp. (A14)

Here, K(2)
n is due to corrections to the phonon DOS. �Aᾱ is defined similar to Eq. (A11).

3. Drag coefficients: Qn and Q̃n

The coefficients Qn and Q̃n come only from the fourth term in Eqs. (A4) and (A5). They are related to the phonon/electron
drag effect, e.g., a phonon temperature difference between the two leads gives rise to an electric current, and vice versa. To derive
it, we write the contribution from the fourth term as

Iα,(4) = e

�

∫
dε

2π
tr
[
Gr

0�
>
epG

a
0�

<
α − Gr

0�
<
epG

a
0�

>
α

]
. (A15)

Using the expression for �>,<
ep ,

�>,<
ep (ε) = i�

∑
kl

∫
(MkG

>,<
0 (ε−)Ml)D>,<

0,kl (ω)
dω

2π
, (A16)

and Eqs. (A7) and (A8), we get

Iα,(4) = e
∑
klβγ

∫
dε

2π

∫
dω

2π
tr[MkAβ(ε−)MlÃα(ε)]Aγ,kl(ω)(fα(ε)(1 − fβ(ε−))(1 + nγ (ω)) − (1 − fα(ε))fβ(ε−)nγ (ω)), (A17)

We have used the abbreviation fα(ε) = f (ε,μα,T α
e ), nγ (ω) = nB(ω,T

γ
p ). Using the mathematical relation

[f (x) − �(t)][f (y) − �(−t)] = [�(t) + n(x − y)][f (x) − f (y)], (A18)

with �(t) the Heaviside step function, f (x) = 1/(ex + 1), n(x) = 1/(ex − 1), we have

Iα,(4) = e
∑
βγ

∫
dω

2π
Tr[	α̃β(ω)Aγ (ω)](nγ (ω) − nB(�ω + μβ − μα)). (A19)

It’s easy to see that if μL = μR , and T L = T R , I(4)
α = 0. If T α

p = T ᾱ
p + δT , we get

Iα,(4) = −e
∑

β

∫
dω

2π
�ωTr[	α̃β(ω)Aα(ω)]

∂nα

∂�ω

δT

T
. (A20)

In the same way,

J α,(4)
e = −e

∑
β

∫
dω

2π
�ω(ε − μα)Tr[	α̃β(ω)Aα(ω)]

∂nα

∂�ω

δT

T
. (A21)

From this we get Qn as in Eq. (6).
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Substituting the phonon self-energy

�
>,<
kl (ω) = −i

∫
dε

2π
tr[MkG

>,<
0 (ε)MlG

<,>
0 (ε−)] (A22)

into

J α,(4)
p = −

∫
dω

4π
�ωTr

[
Dr

0�
>
e Da

0�<
α − Dr

0�
<
e Da

0�>
α

]
. (A23)

Similar manipulation gives Q̃n.

4. Power

For a finite eV , Joule heating becomes important. The power defined as energy current from the electrons to the phonons
is [21]:

Q = −i

∫
dε

2π

∫
dω

2π
�ωTr[tr[MG>

0 (ε)MG<
0 (ε−)]D<

0 (ω)]. (A24)

Using Eqs. (A7), (A8), and (A18), we can show that it is equivalent to

Q =
∑
αβ

∫
dε

2π

∫
dω

2π
�ωTr[Xαβ(ε,ε−)A(ω)]nB(�ω)(nB(�ω + μβ − μα) + 1)(fα(ε) − fβ(ε−)). (A25)

It is nonzero only when α 
= β, so

Q =
∫

dω

2π
�ωTr[	LR(ω)A(ω)]�nB(�ω,T ; �ω − eV,T ). (A26)

APPENDIX B: ONSAGER SYMMETRY

Here, we show that Qn = Q̃n in the presence of time-reversal symmetry, e.g., (Gr )T = Gr . In that case, from Eq. (A8), we
have

Ãα = A∗
α, Ã = A, Ãα = A∗

α, Ã = A. (B1)

Furthermore, A and A are both real. Consequently, in the linear response regime, we can set f (ε,μα,T α) = f (ε,μβ,T β) in
Eq. (7), and get

∑
β

	
(n)
α̃β =

∑
β

	
(n)
α̃β̃

=
⎡
⎣∑

β

	
(n)
αβ

⎤
⎦

∗

. (B2)

Using the above two equations, we see that Q∗
n = Q̃n.

On the other hand, the coefficients Qn are real Qn = Q∗
n. This can be seen from the fact that: (1) the matrices M , A, A are

real, and Aα/Aα is Hermitian; (2) the trace of their products is real. Putting them together, we get the desired result Qn = Q̃n.

APPENDIX C: EQUIVALENCE TO THE RESULTS OF REF. [38]

Here, we show that results of Ref. [38] [Eqs. (35) and (36)] are a special case of our results. There, the authors considered one
electronic level at (ε0) coupled to one vibrational mode with angular frequency ω0. The electronic level couples to two electrodes
and the vibrational mode couples to one phonon bath, characterized by γph. In this special case, all the matrices become numbers.

We get Gr
0(ε) = [ε + iγ (ε)/2 − ε0]−1, with γ (ε) = γR(ε) + γL(ε), and Dr

0(ω) = [(ω + iγph)2 − ω2
0]

−1
. Now we have Q0 = 0,

since the phonon mode couples only to one bath and Aα is real. Substituting these two equations to Eq. (6), and assuming γph is
small, we get

Qn = m2
∫

dε

4π
(ε + �ω0/2 − μ)n

∣∣Gr
0(ε + �ω0/2)

∣∣2∣∣Gr
0(ε − �ω0/2)

∣∣2
∂�ωnB(�ω0)[γα(ε − �ω0/2)γᾱ(ε + �ω0/2)

− γα(ε + �ω0/2)γᾱ(ε − �ω0/2)](f (ε + �ω0/2) − f (ε − �ω0/2)). (C1)

This is consistent with Eqs. (35) and (36) of Ref. [38]. The extra factor 1/2 in Eq. (C1) comes from different definition of the
e-ph interaction m. Note that we need γα(ε) to be energy dependent, and γα(ε) 
= γᾱ(ε), in order for Qn 
= 0.
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[16] C. M. Finch, V. M. Garcı́a-Suárez, and C. J. Lambert, Phys. Rev.

B 79, 033405 (2009).
[17] A. A. M. Staring, L. W. Molenkamp, B. W. Alphenaar, H. van

Houten, O. J. A. Buyk, M. A. A. Mabesoone, C. W. J. Beenakker,
and C. T. Foxon, EPL 22, 57 (1993).

[18] R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W.
Molenkamp, Phys. Rev. Lett. 95, 176602 (2005).

[19] D. Boese and R. Fazio, EPL 56, 576 (2001).
[20] B. Dong and X. L. Lei, J. Phys. Condens. Matter 14, 11747

(2002).
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Dundas, Phys. Rev. B 85, 245444 (2012).
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