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We calculate the spin transport of hydrogenated graphene using the Landauer-Büttiker formalism with a spin-
dependent tight-binding Hamiltonian. Hydrogen adatoms are a common defect and they carry a finite magnetic
moment, which makes it important to understand their influence on spin transport for graphene-based spin devices.
Our tight-binding model accurately reproduces the density-functional theory band structure and atom-projected
density of states. The advantages of using the Landauer-Büttiker formalism are that it simultaneously gives
information on sheet resistance and localization length as well as spin relaxation length. Furthermore, the
transport can be computed very efficiently using this method by employing the recursive Green’s function
technique. Here, we study hydrogen adatoms on graphene with randomly aligned magnetic moments, where
interference effects are explicitly included. We show that a 5 ppm hydrogen defect density is sufficient to reduce
the spin relaxation length to 2 μm and that the inverse spin relaxation length and sheet resistance scale nearly
linearly with the impurity concentration. Moreover, the spin relaxation mechanism in hydrogenated graphene is
Markovian only near the charge neutrality point or in the highly dilute impurity limit.
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I. INTRODUCTION

Spin transport in graphene has attracted a lot of attention
in recent years due to very long spin relaxation times and spin
relaxation lengths predicted for this material [1,2]. The spin
relaxation length in graphene has been predicted theoretically
to be at least 20 μm [1] for experimentally realistic device
parameters, whereas experimental values are about an order
of magnitude lower, typically around 1–4 μm [3–8], but has
been observed as large as around 200 μm in short samples at
low temperature [9] and 12 μm in encapsulated graphene at
room temperature [10]. It has been ruled out experimentally
that this discrepancy is due to hyperfine interactions with the
naturally occurring 13C isotope in graphene [7]. Experimental
measurements of graphene in the presence of a strong magnetic
field show that the observed low spin relaxation length is, at
least in part, due to magnetic impurities in graphene [11].
Magnetic impurities are very common in graphene and may,
for instance, be hydrogen adatoms [12], vacancies [12,13], or
embedded metal atoms [14,15] in graphene pores. An attempt
to explain the effects of magnetic impurities in graphene has
been given by Kochan et al. [16]. They find that 0.36 ppm
coverage of hydrogen adatoms is sufficient to obtain spin
relaxation times that are in agreement with experiments. Their
model is based on the Green’s function of a single hydrogen
adatom in an infinite graphene sheet and multiplying the results
with the impurity concentration. In effect, their model does not
include interference effects between scatterers and is thus only
valid in the highly dilute limit. Spin transport in hydrogenated
graphene was also considered by Soriano et al. [17,18]. Their
method is based on a mean-field Hubbard Hamiltonian and
the real space Kubo-transport formalism. They find that a
coverage of 15 ppm hydrogen adatoms gives the correct order
of magnitude of the spin relaxation time [18], which is more
than an order of magnitude larger than the prediction by
Kochan et al. Additionally, the energy dependence of the two
theoretical predictions for the spin relaxation time do not agree

with the experimental findings. A recent ab initio study of
the spin scattering of hydrogen adatoms on narrow armchair
graphene nanoribbons by Wilhelm et al. [19] has shown that
spin scattering off a single hydrogen adatom with defect spin
oriented perpendicular to the electron spin is sufficient to
obtain spin-flip conductance on the same order of magnitude
as the spin-conserved conductance. They also showed spin-
orbit interactions to be negligible compared to exchange
interactions in the context of spin scattering on hydrogen
adatoms.

The spin relaxation length is determined by the decay rate
of spin polarization. Zurek et al. [20] have found through a
phenomenological spin interaction Hamiltonian that the spin
relaxation decay rate depends on the distribution of coupling
strengths between a spin system and an environment with many
independent spins. In particular, they find that a Gaussian
distribution of couplings leads to Gaussian decay of the
spin polarization with respect to time, whereas a Lorentzian
distribution leads to exponential decay. It is straightforward
to demonstrate that the spin relaxation of scatterers on a
classical Markovian chain is also exponential. Therefore, the
exponential decay of spin polarization is typically referred to
as Markovian behavior [21].

In this paper, we calculate the spin-dependent elec-
tron transport on graphene with hydrogen adatoms using
the Landauer-Büttiker formalism, which is a widely used
method for calculating quantum transport in nanoscale devices
[19,22–27]. We use hydrogen adatoms as they are very
common magnetic defects on graphene. Each defect has a
finite magnetic moment of 1μB . Additionally, due to local
sp3 hybridization, heavily hydrogenated graphene has an
energy gap [28]. In particular, we will demonstrate that the
Landauer-Büttiker formalism can be used to extract the spin
relaxation length of a system. We will demonstrate that the
spin relaxation is not always Markovian and that inverse spin
relaxation length and sheet resistance scale nearly linearly with
impurity concentration.
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II. THEORETICAL METHODS

We start by simulating a hydrogen adatom on graphene in a
supercell geometry using density-functional theory (DFT) as
implemented in the FHI-AIMS package [29]. It is an all-electron
code with numerical atom-centered basis functions. We use the
default tight basis set for each atom type in a spin-polarized
calculation. The electron-electron interactions are treated at
the level of the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [30]. The hydrogen adatom on graphene
is relaxed in a supercell with 2 × 8 × 8 = 128 carbon atoms,
until the forces between the atoms are smaller than 10−3 eV/Å.
We expect the supercell to be large enough for finite size effects
to be negligible to describe hydrogen adatoms in the dilute
limit. Moreover, the DFT self-consistency cycle is considered
converged if, among other things, the total energy changes by
less than 10−6 eV. We use an 8 × 8 × 1 k-point Monkhorst-
Pack grid during relaxation. The final band structure and
density of states (DOS) calculations use �-centered grids of
15 × 15 × 1 k points, whereas the atom-projected partial DOS
(PDOS) calculation uses a grid of 12 × 12 × 1 k points.

The DFT band structure, DOS, and PDOS of a system with a
hydrogen adatom are shown in Fig. 1. There are spin-polarized
impurity bands on both sides of the Fermi energy that also
appear as peaks in the total DOS. The occupied impurity band
of the majority spin component results in a spin moment of
1.0μB . The states corresponding to the impurity band, and the
resulting spin density thereof, are localized at the hydrogen
atom (H) and at the sublattice neighboring the carbon atom
(C0) underneath the hydrogen atom. Other models, such as
Ref. [17], remove the H and C0 atom sites, such that the
vacancy in the lattice results in a similar spin density profile.

We fit tight-binding (TB) models to the DFT band structures
and PDOS in order to simulate systems with a large number
of hydrogen adatoms in the dilute limit. We start with a tight-
binding model of graphene, written as

Ĥ0 =
∑

i,j

tij |i〉〈j |, (1)

where |i〉 is a state localized at the lattice site i, and tij
are hopping parameters between the lattice sites. The carbon
on-site energy is taken as the energy zero point. We take
hoppings up to third-nearest neighbors, and we denote the
first-, second- and third-nearest-neighbor hopping elements as
t1, t2, and t3, respectively. By fitting to the pristine graphene
DFT band structure, we find the C-C hopping parameters
t1 = −2.855 eV, t2 = −0.185 eV, and t3 = −0.190 eV. The
t1 and t2 parameters are fitted freely, and t3 is included by
assuming that t3 = t1(0.18/2.7), where the factor is motivated
by earlier models [31].

It turns out that the systems with a hydrogen adatom can
be accurately described with remarkably simple models, at
least in the dilute limit. Namely, we introduce a new site
corresponding to the hydrogen adatom (H), and we couple it to
the graphene backbone by allowing only a spin-independent
hopping t ′ to the carbon site beneath it (C0). Moreover, the
hydrogen on-site potential is taken as spin dependent with
values of ε↑ and ε↓ for the majority and minority spin channels,
respectively. The model Hamiltonian in the case of a single

hydrogen adatom is written as

Ĥ = Ĥ0 + t ′(|C0〉〈H| + |H〉〈C0|)
+ |H〉〈H| ⊗ (ε↑|↑a〉〈↑a| + ε↓|↓a〉〈↓a|), (2)

where the spin-independent parts are shortened as Ĥ0 ⊗ 1 =
Ĥ0, and |↑a〉 and |↓a〉 are the orthogonal spin basis
vectors along the spin-quantization axis a = (sin θ cos φ,

sin θ sin φ, cos θ ), such that |↑a〉 = cos(θ/2) |↑〉 + eiφ

sin(θ/2) |↓〉 and |↓a〉 = e−iφ sin(θ/2) |↑〉 − cos(θ/2) |↓〉,
where we have used the shorthand notation |↑〉 = |↑ẑ〉 and
|↓〉 = |↓ẑ〉. The spin-quantization axis for the charge carriers
is chosen to be ẑ in all calculations.

We fit the tight-binding model to the DFT band structure and
PDOS. Specifically, we compare the six lowest unoccupied and
six highest occupied bands, and fit the two-dimensional band
energies in the first Brillouin zone. The DFT PDOS is fitted
to the TB local DOS (LDOS) in the defect neighborhood up
to the fourth-nearest carbon atoms surrounding the hydrogen
adatom. We find that the C-H hopping is t ′ = 9.475 eV, and
the hydrogen on-site potentials have values ε↑ = 1.853 eV
for the majority spin component and ε↓ = 4.689 eV for the
minority spin component. The fitted TB band structure, total
DOS, and LDOS are shown in Fig. 1, where they are compared
to the DFT calculations. The figure shows excellent agreement
between the TB model and the DFT results. One should note
that the model parameters depend slightly on the number of
energy bands and PDOS atoms, and the corresponding weights
for these in the cost function, but this will only have a marginal
effect on the obtained results.

We consider the quantization axis of the defect spin
moments as classical vectors that can be rotated individually,
and eventually ensemble average results over different rotation
angles and defect position realizations. To do this, we write
the spin-dependent part of the model Hamiltonian, Eq. (2), as

ε↑|↑a〉〈↑a| + ε↓|↓a〉〈↓a| = ε↑ + ε↓
2

1 + ε↑ − ε↓
2

σ̂a, (3)

where 1 = |↑a〉〈↑a| + |↓a〉〈↓a| is the identity matrix and σ̂a =
|↑a〉〈↑a| − |↓a〉〈↓a| is the Pauli z matrix in the given basis. For
each defect, we define the rotation angles θ and φ on the Bloch
sphere. As the only spin-dependent parameter is the hydrogen
on-site potential, spin flipping only occurs at these sites when
the charge carrier spin is not aligned with the defect spin. In
the {|↑〉 , |↓〉} basis, σ̂a is given by

σ̂a = cos θ |↑〉〈↑| − cos θ |↓〉〈↓|
+ e−iφ sin θ |↑〉〈↓| + eiφ sin θ |↓〉〈↑|. (4)

The rotation of the defect spins is similar to the method used in
Ref. [19], except that we rotate each defect spin individually.
The reasons why we do this are the following: In the dilute
limit, the interactions between the defects can be assumed
small. Then a finite temperature or other environmental
factors, e.g., local Zeeman terms originating from the graphene
curvature or substrate, can break the magnetic ordering in
a system with many hydrogen adatoms. In such a case, we
cannot choose the same spin basis simultaneously for all
the defect spin moments. Instead, the defect spin moments
can be at least partly uncorrelated, pointing to somewhat
random directions. On the other hand, in the limit of many

195408-2



SPIN RELAXATION IN HYDROGENATED GRAPHENE PHYSICAL REVIEW B 92, 195408 (2015)

Γ M K Γ
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

E
n
er

g
y

[e
V

]

Total DOS H

×20

C0

×20

C1

×20

C2

×20

C3

×20

[arb. units]

DFT spin up

DFT spin down

TB spin up

TB spin down

FIG. 1. (Color online) Spin-polarized band structure, total DOS, and PDOS of an 8 × 8 supercell with a hydrogen adatom for both the
majority and minority spin components. The DFT PDOS is compared to the TB LDOS at the hydrogen atom (H), the carbon atom underneath
the hydrogen atom ( C0), and its first-, second-, and third-nearest neighbors C1, C2, and C3, respectively.

nearby defects, frustration can result in a nontrivial defect spin
moment configuration that can be difficult to estimate without
explicitly including the defect spin-spin interactions.

The transmittance between any two leads p and q of a
multiterminal system can be calculated using the Landauer-
Büttiker formula [24] Tpq = Tr{�pG�qG

†}, where G =
[(E + iε)I − H − ∑

n �n]−1 is the retarded Green’s function.
�n and �n are the self-energy and linewidth functions,
respectively, of lead n. The leads are modeled here as pristine
graphene ribbons with the same unit cell width as the device
region and the electronic transport is in the zigzag direction
(see Fig. 2). A small imaginary part ε = 10−5 eV is added to
the energy for numerical stability. If the spins are decoupled
in the leads, it is easy to demonstrate that the spin-channel
resolved transmittance between the leads of a spin-dependent
two-terminal system becomes [19,32]

Tσ,σ ′ = Tr
{
�(L)

σ G�
(R)
σ ′ G†}, (5)

where �(L)
σ (�(R)

σ ′ ) is the linewidth function of the left (right)
lead with spin σ (σ ′). The transmittance on this form can
be computed efficiently using the recursive Green’s functions
(RGF) technique (as outlined in Refs. [25,33]). All calculations
are performed on unit cells with a relatively large width of

FIG. 2. (Color online) Unit cell of width W and length L as used
in the simulations. The unit cell is repeated periodically transverse to
the leads. The spin-dependent transport is equivalent to having two
separate channels that couple only at magnetic impurity sites.

12.8 nm in order to minimize finite size effects. Furthermore,
the calculations are performed using periodic boundary con-
ditions transverse to the transport direction and the results are
averaged over 29 k points. Exactly at the charge neutrality point
(CNP), the only propagating mode in the leads is at k = 0 and
it is therefore important to ensure that this is included.

The spin-conserved transport is defined as Tsc = T↑↑ + T↓↓
and the spin-flipped transport is defined as Tsf = T↑↓ + T↓↑.
We expect the total transport T = Tsc + Tsf to be either Ohmic
or localized. For Ohmic transport the resistance per unit cell
is R(L) = Rc + RsL/W , where Rc is the contact resistance,
Rs is the sheet resistance, L is the device length, and W is the
width of the unit cell. In the localization regime, the resistance
is R(L) = Rc exp(L/ξ ), where ξ is the localization length. By
fitting the total transport to a compound expression

R(L) = h

2e2T
= Rc exp(L/ξ ) + RsL/W, (6)

we obtain both localization length and Ohmic resistance. In
the limits ξ → ∞ and Rs → 0, this expression reduces to the
Ohmic and localization regimes, respectively.

We can use the spin polarization P to obtain the spin
relaxation length λS . According to Zurek et al. [20], the
spin relaxation mechanism can be either exponential or
Gaussian, depending on the distribution of spin couplings
to an environment. In order to include both cases as well
as any intermediate relaxation mechanism, we fit the output
spin polarization of a device with length L according to the
following expression,

P (L) = Tsc(L) − Tsf (L)

Tsc(L) + Tsf (L)
= e−(L/λS )n . (7)

It follows that the spin relaxation behavior is exponential when
n = 1 and Gaussian when n = 2.

III. RESULTS

The output spin polarization of a system containing a
single H adatom is shown in Fig. 3. When there is only
a single defect, the transport properties do not depend on
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FIG. 3. (Color online) Spin polarization as a function of energy
and angle of a graphene system with a single H adatom. The inset
shows an illustration of the device.

the azimuthal defect spin angle φ. Therefore, only the polar
angle θ and the energy E are varied. The figure shows
that the spin scatters very strongly near the CNP, E 
 0,
resulting in a significantly decreased spin polarization. This
is a consequence of scattering on H adatoms, which have
defect bands that span approximately ±0.1 eV around the
CNP (cf. Fig. 1). This means that a single H adatom with defect
spin perpendicular to the charge carrier spin is able to destroy
almost half of the spin polarization for energies near the CNP.
This is in good agreement with Wilhelm et al. [19], who found
that an N = 11 armchair graphene nanoribbon with a single
H adatom can have spin-flip transmittance that can surpass the
spin-conserved part.

In order to obtain information on the interference effects
on spin flipping, we calculate the output spin polarization
of a system with two H adatoms separated by a distance of
2.21 nm parallel to the transport direction [see Fig. 4(b)].
The output spin polarization is evaluated at the CNP and
the orientations of the defect spins have been chosen to be
(θ1,φ1) = (90◦,0◦) and (θ2,φ2), respectively. The figure shows
that the output spin polarization is minimal when the defect
spins are perpendicular to the charge carrier spin and point in
the same direction, whereas it is maximal, when the spins are
perpendicular to the charge carrier spin and point in opposite
directions. In Fig. 3, we saw that a single defect with spin
perpendicular to the charge carrier spin could flip almost half
of the electron spin to the opposite channel. Now we see
that by having two defects with oppositely oriented spins, the
second can almost completely negate the first spin flip. When
the two defect spins point in opposite directions, the phase
change associated with spin flipping will have equal size and
opposite sign. This means that the electron spin will be in
phase with the charge carrier spin after the second spin flip,
leading to constructive interference. This is not necessarily
the case when the defect spins point in the same direction. The
interference between defects is thus very important and should
not be ignored. Furthermore, the spin-scattering strength
depends strongly on the relative position of the two defects,
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FIG. 4. (Color online) Spin polarization of a system with two H
adatoms at an energy of E = 0.0 eV. The H adatoms are placed on a
line parallel to the transport direction and the defect spin angles are
(θ1,φ1) = (90◦,0◦) and (θ2,φ2), respectfully. (a) The distance between
the defect is varied and θ2 has been fixed to 90◦. (b) The defects are
placed 2.21 nm apart.

which is illustrated in Fig. 4(a), where the spin polarization
is calculated as a function of distance between them. The
figure shows that at the CNP, the output spin polarization is
periodic with the distance between them with a period of three
graphene lattice constants. Presumably, the periodicity arises
due to the same quantization phenomenon that causes every
third armchair graphene nanoribbon to be metallic, and the
remaining nanoribbons to be semiconducting.

We now turn to calculating the effects of multiple magnetic
hydrogen adatoms on graphene. We place hydrogen adatoms
at random positions uniformly distributed across the device
according to a predefined impurity concentration η. We wish
to keep the device nonmagnetic in order to isolate spin
relaxation from other magnetic effects. Therefore, we choose
the directions of the defect spins at random, uniformly
distributed on a Bloch sphere. The transport is calculated
for very long devices of 147.5 nm, which contain a total of
72 000 carbon atoms in the unit cell. Using the RGF method,
we can extract the transport after each slice of the device,
allowing us to obtain the transport results for all device lengths
until the chosen maximum length. In order to minimize the
effects of the finite width of the unit cell, we average over an
ensemble of 150 device realizations. The spin polarization as
a function of device length and energy for different impurity
concentrations is shown in Fig. 5 as well as an example of
transmittance and spin polarization as a function of device
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FIG. 5. (Color online) (a) Ensemble-averaged transmittance and
spin polarization as a function of device length for a system
with impurity concentration η = 500 ppm calculated at the CNP.
(b) Ensemble-averaged spin polarization as a function of energy and
device length for different impurity concentrations. The dashed lines
show the spin relaxation length.

length for a single energy and impurity concentration. We show
the logarithm of the spin polarization in the range between −1
and 0 in order to highlight the spin relaxation length, which
is defined as the device length at which ln[P (L)] = −1. The
figure shows that the spin polarization decays very fast for
energies close to the H adatom defect bands (cf. Fig. 1). As
expected, the spin polarization decays faster with increasing
impurity concentration. Note that the spin polarization also
decays for energies away from the H defect bands, due to the
relatively small, but finite, spin splitting in the remaining band
structure. The small energy-dependent oscillations in Figs. 5
and 6 are due to finite size effects originating from the finite
width of the unit cell.

Equation (7) with two fitted parameters captures the
simulated spin polarization as a function of device length very
accurately. The fitted parameters are the spin relaxation length
λS as well as the exponent n, which provides information
on the spin relaxation mechanism [see Fig. 6(a)]. A few
examples of the fitting procedure are included in Fig. 6(b) in
order to illustrate the excellent quality of the fits. The carrier
concentration in the figure is computed at Fermi energies
corresponding to the energy axis. Positive and negative carrier
densities refer to electron and hole doping, respectively. The
spin relaxation length is very short for energies near the
H defect bands. For the same energies, the spin relaxation
mechanism is predominantly exponential with an exponent
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FIG. 6. (Color online) (a) Normalized spin relaxation length η ×
λS and exponent n (inset) obtained by fitting against Eq. (7). The spin
relaxation lengths are normalized with the defect concentration in
order to illustrate that their inverse scale nearly linearly with respect
to it. (b) Examples of fitting the spin relaxation against Eq. (7) of a
system with 5000 ppm H adatoms for different energies. The energies
are between 0.0 eV (fastest decay) and 1.0 eV (slowest decay) in steps
of 0.2 eV. The circles are the ensemble averaged spin polarizations
and the lines are the corresponding fitted functions. For visualization
purposes, only every fourth data point is shown.

of n 
 1. For energies further away from the CNP, the spin
relaxation length increases. We note that λS has two minima
near the CNP, which are correlated with the large spin splitting
of the H adatom defect bands. Exactly at the CNP, the spin
splitting of the defect bands is vanishing, resulting in a local
maxima. The figure shows that there is an almost linear
scaling of the inverse spin relaxation length λ−1

S with respect
to impurity concentration η, especially near the CNP. Away
from the CNP we observe that n decreases with decreasing
impurity concentration. This suggests that the spin relaxation
mechanism tends toward exponential (Markovian) behavior
in the highly dilute impurity limit. Importantly, we see that
the decay of the spin polarization as a function of device
length need not be exponential nor Gaussian, which means
that a more complete theory on spin relaxation should not
presume anything about the spin relaxation behavior, except
in the limit of very dilute systems, where the approximation of
exponential decay seems to be valid. For energies near the CNP,
the normalized localization length is η × λS ≈ 0.01 nm. In
order to obtain experimentally observed spin relaxation length
of about λS 
 2 μm [3], the impurity concentration should be
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obtained by different authors.

η ≈ 5 ppm, which is more than an order of magnitude larger
than the prediction by Kochan et al. [16] of 0.36 ppm. We
expect our model to be more accurate as it is based on a full
transport calculation and therefore takes interference effects
into account. Our prediction of the impurity concentration is,
however, in closer agreement with Soriano et al. [18], who
found that an impurity concentration of 15 ppm gives spin
relaxation times in agreement with an experiment based on
time propagation of the spin polarization operator using a
self-consistent Hubbard model.

A comparison of spin relaxation lengths obtained by the
current model and those obtained by other theoretical methods
and experiments is presented in Fig. 7. We have scaled our
500 ppm result to 5 ppm by multiplying it by a factor of
100. The two other theoretical methods [16,17] give the spin
relaxation time τS , which is related to the spin relaxation length
by λS = vSτS in the ballistic regime and by λS = √

DSτS in
the diffusive regime, where vS is spin carrier velocity and and
DS is the spin diffusion constant. In the low-defect-density
case, we expect to be in the ballistic regime. Therefore, we
compare results that are all obtained in the low-defect-density
case. We obtain a velocity vS = 1.65 × 104 m/s by a least
squares fitting between our result and the analytic result
obtained by Kochan et al. [16]. We observe that the result
by Kochan et al. is in fairly good agreement with ours
regarding the location of the two minima near the CNP
and in quantitative agreement further away from the CNP.
However, their result predicts variations over several orders
of magnitude near the CNP, whereas our result predicts a
variation of only about a factor of 2. In fact, their result is
singular exactly at the CNP, because it is neither broadened
by the self-energy due to leads or by finite geometry effects.

Furthermore, we compare with the experimental results of
hydrogenated graphene obtained by Wojtaszek et al. [3]. Note
that the experimental results were obtained without detailed
knowledge of the defect concentration. However, the authors
estimated the concentration to be around 200 ppm. Lastly, we
compare our results to the theoretical result by Soriano et al.
[17]. The figure shows that their result is neither in qualitative
agreement with our model nor the analytic result by Kochan
et al. or experiment. We speculate that the deviation arises from
the fact that Soriano et al. uses vacancies in graphene to model
hydrogen adatoms, whereas both our model and the model
used by Kochan et al. employ a parametrization of hydrogen
on graphene. Theoretical predictions [16,18,34], including our
own, show that the spin relaxation time (or spin relaxation
length) decreases with increasing impurity concentration.
However, experimental work on hydrogenated graphene shows
that the spin relaxation time (or spin relaxation length) actually
increases with increasing impurity concentration [3]. The
origin of this discrepancy remains elusive, but could stem
from interactions between graphene and the substrate, as this
has not been included in any of the theoretical models. Another
possibility is that the hydrogen plasma used in the experiments
was additionally cleaning the graphene surface, thus increasing
the spin relaxation time. Finally, a recent paper by Idzuchi
et al. [35] discusses the possibility that details of the Hanle
measurements were not taken into account in the data analysis.

By fitting the total transmittance against Eq. (6) we obtain
the Ohmic sheet resistance as well as the localization length
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FIG. 8. (Color online) (a) Normalized Ohmic sheet resistance
Rs/η and (b) inverse localization length 1/ξ obtained by fitting
against Eq. (6).
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(see Fig. 8). We observe localization near the H defect bands
(cf. Fig. 1) and vanishing localization elsewhere. Additionally,
the figure shows that the sheet resistance scales linearly with
respect to impurity concentration. However, the scaling of the
localization length is far from linear, which shows that the in-
duced localization per atom decreases with increasing impurity
concentration. Furthermore, as the impurity concentration is
decreased, the energy window at which there is localization,
narrows.

IV. CONCLUSIONS

In this work, we study spin-dependent transport of hy-
drogenated graphene. We use a simple model with only a
spin-dependent on-site potential at the defect site to describe
hydrogen adatoms on graphene. As the model is simple, some
of the results are expected to extend qualitatively to other sys-
tems as well. We have demonstrated that the Landauer-Büttiker
formalism can be used to calculate spin-dependent transport of
systems with magnetic impurities with individually oriented
magnetic moments. In this work, we study hydrogen adatoms
on graphene. By calculating the spin-dependent transport as
a function of device length, we can extract properties such as
spin relaxation length, localization length, and sheet resistance.
We have shown that there is strong localization for energies

around the hydrogen-induced defect bands, which also lead to
a very high sheet resistance. Away from the defect bands there
is vanishing localization. Furthermore, we have demonstrated
that the spin relaxation length is very short for energies around
the hydrogen-induced defect bands and that the spin relaxation
mechanism is exponential (Markovian) near the CNP and
nonexponential (non-Markovian) otherwise. Additionally, we
have shown that the inverse spin relaxation length and sheet
resistance scale nearly linearly with impurity concentration,
whereas the localization length does not.
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R. Yakimova, T. J. B. M. Janssen, A. Tzalenchuk, and V. Fal’ko,
Phys. Rev. Lett. 115, 106602 (2015).

[12] O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
[13] Y. Ma, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, New

J. Phys. 6, 68 (2004).
[14] A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö,
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