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Stability and magnetization of free-standing and graphene-embedded iron membranes
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Inspired by recent experimental realizations of monolayer Fe membranes in graphene perforations, we perform
ab initio calculations of Fe monolayers and membranes embedded in graphene in order to assess their structural
stability and magnetization. We demonstrate that monolayer Fe has a larger spin magnetization per atom than
bulk Fe and that Fe membranes embedded in graphene exhibit spin magnetization comparable to monolayer Fe.
We find that free-standing monolayer Fe is structurally more stable in a triangular lattice compared to both square
and honeycomb lattices. This is contradictory to the experimental observation that the embedded Fe membranes
form a square lattice. However, we find that embedded Fe membranes in graphene perforations can be more
stable in the square lattice configuration compared to the triangular. In addition, we find that the square lattice
has a lower edge formation energy, which means that the square Fe lattice may be favored during formation of
the membrane.
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I. INTRODUCTION

In recent years, there has been a tremendous interest
in graphene and its derivatives, owing to their remarkable
electronic properties, such as ultrahigh mobility of 1 000 000
cm2/Vs at low temperature [1]. These properties make
graphene interesting for electronic and spintronic applications.
Carbon-based spintronic devices may have a distinct advantage
over many other materials in that carbon has a very low
spin-orbit coupling together with an absence of hyperfine
interaction in the predominant 12C isotope. This results in long
spin lifetimes [2–4], as well as large spin relaxation lengths,
which have been found to be on the order of several microns at
room temperature [2–5] and make graphene ideal for ballistic
spin transport [6].

Pristine graphene is nonmagnetic, but several suggestions
on how to give graphene magnetic properties have been put
forward. Density functional theory (DFT) calculations have
shown that ferromagnetism can be introduced in graphene by,
e.g., semihydrogenation [7], adding vacancies [8,9], or adding
adatoms [9–14]. Semihydrogenating graphene sheets, where
one sublattice is fully hydrogenated while the other is not,
leads to a sublattice imbalance, which induces a magnetic
moment of 1μB per unit cell [7]. Monovacancies in graphene
have also been demonstrated to have a magnetic moment
between 1.04μB [8] and 1.48μB [9]. Lehtinen et al. [8] find
that the spin-polarized state may be unstable, and find that it
can be stabilized by adsorption of two hydrogen atoms in
the vacancy, with a resulting magnetic moment of 1.2μB .
The spin of a vacancy generally increases with the number
of missing carbon atoms, except for the divacancy where
the magnetic moment is vanishing [9]. Ferromagnetism can
also be induced by transition metal adatoms on graphene or
in graphene vacancies. Transition metal adatoms in graphene
and single-walled carbon nanotubes were studied by Zanella
et al. [10] and Fagan et al. [15], respectively. In particular,
they find that the spin moment of Fe adatoms is largely
unaffected by the presence of carbon. Zanella et al. find that
the spin moment of Fe adsorbed on graphene is either 2 or
4μB depending on the adsorption site, while Fagan et al. find

that the spin moment of Fe adsorbed on a carbon nanotube is
about 3.9μB independent of adsorption site. DFT calculations
show that a single Fe adatom on a graphene monovacancy
is nonmagnetic [11–13]. However, by adding a Hubbard U
term to the GGA functional, Santos et al. [12] showed that
this state may, in fact, be magnetic with a spin moment of
1μB , and that the nonmagnetic properties predicted by the
GGA calculation is a consequence of the limitations of the
functional itself. Nevertheless, the spin moment of a single
Fe adatom on a graphene monovacancy is strongly decreased
compared to free Fe, due to the Fe-C interaction. A single Fe
adatom in a graphene divacancy, however, has a spin moment
of about 3.2μB according to Krasheninnikov et al. [11], and
3.55μB according to He et al. [13]. The reason for the increased
spin is quite obvious; the larger vacancy increases the Fe-C
distance and thus decreases the interaction between Fe and C.
As the interaction between Fe and C seems to decrease the spin
moment of Fe, we expect Fe-C systems to have decreased spins
compared to a pure Fe system. Trapping larger Fe clusters in
graphene perforations will lead to a larger spin moment, which
combined with the electrical properties of graphene, might
make this a suitable system for graphene-based spintronics.

Trapping of metal atoms, such as Fe and Mo, in graphene
and carbon nanotube vacancies have been achieved experi-
mentally in transmission electron microscopy (TEM) [14,16].
Vacancies are created under e-beam irradiation, after which
mobile metal atoms on the surface move to the vacancy,
where they are trapped. These trapped metals are stable for
some time, but detrapping of some of the atoms has been
observed over time [14,16], which is thought to occur due
to weak bonding, e-beam irradiation, or high temperature
during the experiments. Recent experimental results by Zhao
et al. [17] show that monolayer Fe membranes can be grown
in graphene perforations. These monolayer membranes both
form and collapse under e-beam irradiation in TEM. The Fe
is provided via leftover residue from the transfer process,
where graphene is transferred from growth substrate to target
substrate. Electron energy loss spectroscopy (EELS) and high-
angle annular dark-field (HAADF) measurements suggest that
the embedded membranes are composed of pure Fe. They find
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that the embedded Fe membranes form a square lattice with
a lattice constant of about 2.65 Å. Through density functional
theory (DFT) calculations, Zhao et al. find that monolayer Fe
is most stable in a square configuration with a lattice constant
of 2.35 Å. They argue that the difference between observed and
calculated lattice constant may be a result from straining due
to lattice alignment and mismatch between the Fe membrane
and graphene.

In this paper, we present a DFT analysis of the structural
stability and magnetization of Fe systems in an attempt to
obtain a basic understanding of these systems, as well as
to explain the experimental results by Zhao et al. [17]. In
particular, we compare the stability of Fe in square and
triangular lattice configurations for both monolayer Fe, mono-
layer Fe carbide and Fe embedded in graphene perforations.
We model embedded Fe membranes as a periodic system,
effectively giving rise to graphene antidot lattices (GALs),
where the antidots are filled with Fe. GALs, which are periodic
perforations in an otherwise pristine graphene sheet, can
be produced experimentally by, e.g., e-beam lithography on
pristine graphene [18,19]. It is possible that the embedding
of iron in graphene perforations can be scaled up to actual
Fe-filled GALs. GALs have tunable band gaps that depend
on geometric factors [20,21], which make them interesting
for electronic and optoelectronic applications. It has been
shown that a narrow slice of GAL with just a few rows
connected to graphene sheets on either side is sufficient to
block electron transport in the energy gap of the GAL [22,23].
By omitting antidots in some regions of such a GAL barrier,
electrons can be guided through the unpatterned part, giving
rise to an electronic waveguide [24], reminiscent of a photonic
waveguide in a photonic crystal.

II. THEORETICAL METHODS

Spin-polarized DFT calculations were performed using the
ABINIT package [25–28], which uses a plane-wave basis set
to expand the wave function. We have used the Perdew-
Burke-Ernzerhof GGA (PBE-GGA) exchange and correlation
functional [29] in all calculations. We use a plane-wave cutoff
energy of 435 eV combined with the projector-augmented
wave (PAW) method [30]. It has previously been demonstrated
that the PAW method is able to accurately describe magnetism
in transition metal systems [30,31]. We use a Fermi smearing
of 0.27 eV in order for a 16 × 16 × 1 Monkhorst-Pack k-point
grid to be adequate. The Fermi smearing has the effect of
slightly lowering the magnetic moment as electrons will have
a probability to occupy states above the Fermi level. An
interlayer spacing of 10 Å was used in all calculations. Full
relaxation of all atoms in the unit cells were made for all
structures, in addition to relaxation of the unit cell size in the
case of free-standing monolayer Fe and iron carbide. Atomic
coordinates were optimized until the maximum force on atoms
was smaller than 0.05 eV/Å. These parameters have previously
been shown to be adequate for modeling transition metal
adatoms on graphene vacancies [8,11]. The same parameters
are used when calculating the edge formation energy, except
the k-point sampling is reduced to 16 × 1 × 1, due to a lateral
distance between ribbons of 10 Å.

III. FREE-STANDING MONOLAYER SYSTEMS

A. Monolayer iron

In order to obtain an understanding of iron membranes
embedded in graphene perforations, we first determine the
stability of free-standing monolayer iron in different lattice
configurations. Then, we calculate the edge formation energy
of monolayer iron, in order to obtain an understanding of the
formation kinetics of iron membranes. Lastly, we determine
the stability of iron membranes embedded in graphene antidots
for certain hole sizes.

The binding energy and magnetization of free-standing
monolayer iron in square, triangular, and honeycomb lattice
configurations are shown in Fig. 1. The antiferromagnetic
square and honeycomb lattices are made such that each atom
only has nearest neighbors with opposite spin. This is not
possible in the triangular lattice, so we chose an antiferromag-
netic lattice that essentially consists of spin-polarized lines,
where each atom has opposite spin to four of its six nearest
neighbors. We do not expect this configuration to be physically
sound, but we include it in order to compare with the other
lattice configurations. We use the smallest possible unit cells,
which means that the ferromagnetic unit cells of the square
and triangular lattice contain one atom and the honeycomb
lattice contains two. In the antiferromagnetic case, all three unit
cells contain two atoms. The figure shows that ferromagnetic
ordering is generally favored over antiferromagnetic ordering,
consistent with earlier results which show that monolayer Fe
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FIG. 1. (Color online) Binding energy (upper panel) and spin
moment (lower panel) of monolayer Fe as a function of bond length.
The black and red lines are for ferromagnetic and antiferromagnetic
ordering, respectively. The magnitude of the spin is shown in case of
antiferromagnetic ordering, as it has zero net spin. The dashed gray
line indicates the spin of free Fe.
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in the square lattice favors ferromagnetic ordering [32]. The
figure also shows that the honeycomb lattice is unfavored
compared to the square and triangular lattices. We therefore
exclude antiferromagnetic ordering as well as the honeycomb
lattice in the remaining calculations. In addition, the figure
shows that the most stable configuration is the ferromagnetic
triangular lattice, as it has the lowest binding energy at
equilibrium. However, it is seen that, under compressive
strain, the ferromagnetic square lattice eventually becomes
favored. The spin moments per atom at equilibrium are
2.73μB and 2.68μB for the square and triangular lattice,
respectively, which is significantly larger than the bulk spin
moment of 2.22μB [33]. Our results for the spin of the
ferromagnetic triangular lattice are in good agreement with
previous results [34,35].

As expected, we see that the spin moment increases with
increasing distance between the Fe atoms, as the spin tends
towards 4μB for free Fe. We notice that the bond length
at equilibrium of the square lattice is 2.33 Å, which is
significantly lower than the experimental results of 2.65 Å by
Zhao et al. [17], suggesting that the Fe membranes are strained
by the surrounding graphene. In addition, it is seen that the
energy cost of straining the square lattice to 2.65 Å is only
about 0.2 eV per atom. Our predictions of the lattice constant
and energy cost of straining for the square monolayer Fe lattice
are very close to the theoretical results by Zhao et al. The major
difference between the results is that we find the triangular
lattice to be more stable, whereas Zhao et al. find that the square
lattice is more stable, in agreement with their experimental
observations that Fe embedded in graphene perforations forms
a square lattice. The differences in the calculations are that we
use a plane wave basis set and a 16 × 16 × 1 k-point sampling,
whereas Zhao et al. use a localized basis and a 3 × 3 × 1
k-point sampling. The elementary unit cells for monolayer Fe
are very small, and we find that a 3 × 3 × 1 k-point sampling
is insufficient for obtaining converged spin magnetization and
total energy. We therefore believe that the discrepancy arises
due to the different k-point sampling.

B. Edge energy of monolayer iron

We have demonstrated that the triangular lattice is energeti-
cally favored over the square lattice, so in order to explain why
the square lattice is formed experimentally, we now analyze
the edge formation energy by comparing the energy of an Fe
nanoribbon and monolayer Fe. The edge formation energy per
length is given by Eedge = (Eribbon − NEmonolayer)/2l, where l

is the length of the unit cell in the direction of the ribbon edge,
Eribbon is the total energy of the nanoribbon unit cell, N is the
number of atoms in the unit cell, and Emonolayer is the energy
per atom of the monolayer system. The factor of 1/2 is due to
the fact that a nanoribbon has two edges. For both the square
and the triangular lattice, we examine two different rotations
of the edges, as shown in Fig. 2.

In Fig. 3(a) we observe that the triangular lattice has a larger
edge formation energy than the square lattice for both rotations
of both lattices. This means that, during formation of the
membrane, the square lattice may be favored due to the lower
edge formation energy. The membrane may then be kinetically
hindered from subsequently rearranging into the triangular

Triangular Rotated triangular

Square Rotated square

FIG. 2. (Color online) Geometries used for evaluation of edge
energies.

lattice. It is seen in Fig. 3(b) that the bond length contracts
on the edges of the ribbon, while the remaining structure is
almost unchanged. This indicates that the large experimentally
observed lattice constant is not due to formation kinetics.

C. Iron carbide

Another possibility is that the experimentally observed
structure is, in fact, an iron carbide. Zhao et al. state that
relatively small amounts of carbon may lie beyond the
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FIG. 3. (a) Edge formation energy for square and triangular Fe
nanoribbons as a function of nanoribbon width. (b) Bond lengths
through a 16-atom-wide Fe nanoribbon with different orientations
and edge rotations.
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Square Honeycomb

FIG. 4. (Color online) Iron carbides with square and honeycomb
arrangements. The gray balls are C and the orange balls are Fe.

detection limits of their EELS setup and therefore cannot
exclude the possibility that the membrane is made of iron
carbide. It is also very difficult to observe C atoms near
Fe in TEM due to the large difference in contrast. The iron
carbides shown in Fig. 4 have binding energies per unit cell
of −9.91 eV and −9.49 eV for the square and honeycomb
lattice, respectively. The square lattice is thus the most stable
configuration. The sum of the binding energy of separate
monolayer Fe and graphene systems is −10.37 eV. The energy
difference between the separate systems and the iron carbide
is just 0.46 eV, which suggests that the iron carbide in square
arrangement could be metastable. In particular, it is interesting
to note that the lattice constant, i.e., the Fe-Fe distance, of the
square iron carbide is 2.66 Å, which is extremely close to
the experimentally observed value. However, since we find
the structure to be, at best, metastable and no carbon signal
was observed in EELS experiments, we are still skeptical that
the observed structure is, in fact, iron carbide. More accurate
measurements are needed in order to exclude the possibility
of the membranes consisting of iron carbide.

IV. EMBEDDED IRON

We will now study the structural stability and magnetization
of Fe membranes embedded in graphene perforations. In
order to model this with DFT, we impose periodic boundary
conditions, which means we effectively have a graphene
antidot lattice (GAL), where the antidots are filled with Fe.
We use the conventional {L,S} notation to denote GALs with
unit cell side length L and antidot side length S, both in units of
the graphene lattice constant, consistent with earlier work [36].
By filling a given antidot with the same amount of Fe atoms in
the square and triangular configurations, we can make a direct
comparison of the stability of the two systems by comparing
their binding energies. In particular, we compare 12 and 21
Fe atoms embedded in a {4,2} and a {5,3} antidot lattice
with hexagonal hole geometry, respectively. These antidot
lattices are chosen because both square and triangular lattice
configurations with an equal amount of Fe atoms can be found
that conform fairly well with the antidots. Figure 5 shows the
structures after relaxation of all atoms in the unit cell.

The figure shows that the surrounding graphene is almost
unaffected by the presence of Fe, due to the large in-plane
strength of graphene. It is also seen that the Fe bulges out-
of-plane for the small antidots, especially for Fe in square
arrangement. This indicates that the square lattice does not
conform as well to the graphene lattice as the triangular lattice

Square Triangular

{4
,2

}
{5

,3
}

FIG. 5. (Color online) Top and side view of structurally relaxed
graphene antidots with embedded Fe.

does for the small antidot. In the larger antidot, the Fe is seen
to be mostly co-planer with the graphene, which indicates
that both lattice configurations conform better to the graphene
lattice. The Fe still bulges slightly out-of-plane in the square
lattice configuration, which indicates that the square lattice
still conforms worse to the graphene lattice than the triangular
lattice. By comparing the binding energies of the two systems,
we can determine which of the Fe configurations is more stable.

The unit cells we consider are probably too small for the
spins to be decoupled between neighboring cells. This means
that the magnitude of the magnetic moment may differ for
isolated Fe membranes in graphene. However, due to the high
strength of the supporting graphene lattice, we expect that
structural properties will be in quantitative agreement with
isolated Fe membranes.

We find that the triangular lattice is favored in the {4,2}
antidot lattice with a binding energy difference of 2.31 eV,
while the square lattice is favored in the {5,3} antidot lattice
with a binding energy difference of 1.37 eV. The fact that
the square lattice is favored in the large antidot, despite
conforming worse to the graphene lattice, indicates that the
square lattice has a larger binding energy to graphene than
the triangular lattice. We therefore presume that the square
lattice will have a greater advantage in larger antidots, where
it conforms better to the graphene lattice. However, when the
Fe membrane grows too large, the “bulk” behavior should
overcome edge or interface effects, which should lead to
formation of the triangular Fe lattice. Moreover, there is
still the possibility that a 3D nanocrystal could form instead
of the triangular monolayer membrane as the 3D structure,
in principle, has lower energy than the 2D counterpart for
sufficiently large structures. We thus speculate that there is an
antidot size regime, where the square Fe lattice is favored, but
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FIG. 6. (Color online) Top and side view of structurally relaxed
{4,2} graphene antidot lattices with 11 (left) and 13 (right) Fe atoms.

when the antidots become too large, either the triangular
monolayer Fe lattice or a 3D nanocrystal will be formed
instead. However, we cannot investigate the extent of this
regime further, due to the computational complexity of the
DFT calculations.

In the analysis of the {4,2} unit cell, the choice of 12
Fe atoms was made to ensure a symmetric structure in both
triangular and square arrangements. In order to substantiate
our conclusions regarding the relative stability of these
arrangements, we now investigate the {4,2} unit cell with a
varying number of Fe atoms. In this case, we place the Fe
atoms asymmetrically in the unit cell to obtain convergence to
the global structural minimum. For the structure with 12 Fe
atoms, the fully relaxed structure is the triangular one shown
in the top right in Fig. 5. We find that a structure with 11 Fe
atoms is more stable than the structures with either 12, 13,
or 14 Fe atoms. The difference in binding energy per atom
between the structure with 11 and 12 Fe atoms is only 30 meV,
however, which is much smaller than the difference in binding
energy obtained by changing the lattice configuration between
square and triangular. The relaxed structures in the cases of 11
and 13 Fe atoms are shown in Fig. 6. The figure shows that the
structure with 11 Fe atoms approximately forms a triangular
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FIG. 7. (Color online) Fe-Fe bond lengths of the two {5,3}
structures shown in Fig. 5.
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lattice, which is however a bit distorted because there is no
longer any symmetric way to arrange the atoms. Furthermore,
we see that the structure with 13 Fe atoms forms a square
lattice, but it is no longer planar, simply because there is not
enough room in the antidot to support a planar structure with
this many Fe atoms. The conclusion that the triangular lattice
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is stable in the {4,2} unit cell is thus unchanged when varying
the number of Fe atoms by a few units.

We saw previously that there was a rather large discrepancy
between the bond lengths of the bulk monolayer Fe and the
one measured in the experiments. To further investigate this
discrepancy we have counted all the Fe-Fe bond lengths in
the two {5,3} antidot structures in Fig. 7. The figure shows
that the Fe-Fe bond length inside the graphene antidots is
generally quite close to the one measured experimentally, with
a mean value of 2.7 Å and 2.6 Å in the square and triangular
cases, respectively. The square lattice is thus strained by about
16% on average compared to the bulk monolayer value. By
comparison, the mean C-C bond length is almost unaffected
by the interface with a mean value of 1.43 Å in both cases.

Figure 8 shows that the spin moment per Fe atom embedded
in graphene antidots is around the value of monolayer Fe
even for very few embedded Fe atoms. In contrast to Fe in a
graphene monovacancy, where the spin moment is vanishing,
the spin moment is only weakly affected by the presence of
carbon on the edge. In fact, the spin moment may in some cases
even exceed the monolayer value, due to the increased bond
lengths. This is consistent with the result for Fe in a graphene
divacancy, where the spin moment is also only weakly affected
by the presence of carbon. This effect can be seen directly in
Fig. 9, which shows the projected spin moment as a function
of distance from the center of the antidot for a {5,3} graphene
antidot lattice with 21 Fe atoms. The projected spin moment
is calculated by integrating the difference in spin-up and spin-
down electron densities inside the Voronoi volume associated
with each atom. The figure shows that there is, in fact, an
enhanced spin moment on nearly all Fe atoms in this case.

V. CONCLUSIONS

We have studied the stability of monolayer Fe and graphene-
embedded Fe through ab initio calculations. We find that the
most stable configuration of monolayer Fe is the ferromagnetic
triangular lattice with a lattice constant of 2.44 Å. This is
in contrast to experimental results of graphene-embedded
Fe, which shows that these structures have a square lattice
configuration with a bond length of 2.65 Å. However, we
find that the square lattice configuration has a lower edge
formation energy. This means that, during formation, it might
be favorable to form the square lattice and the structure could
then be kinetically hindered from subsequently rearranging
to the triangular lattice. Furthermore, we have compared the
stability of the square and triangular Fe lattices in two different
graphene antidot lattices. In the larger one of these, the square
lattice is, in fact, more stable than the triangular lattice, with a
mean Fe-Fe bond length of 2.7 Å. This result is in very close
agreement with the experimental results. Our results show that
only a few Fe atoms in the graphene antidots are sufficient to
give rise to magnetic moments, which are comparable to the
magnetic moment of monolayer Fe.
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[3] M. H. D. Guimarães, P. J. Zomer, J. Ingla-Aynés, J. C. Brant,
N. Tombros, and B. J. van Wees, Phys. Rev. Lett. 113, 086602
(2014).
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Mater. Sci. 42, 337 (2008).

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[30] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[31] G. Kresse, W. Bergermayer, and R. Podloucky, Phys. Rev. B 66,

146401 (2002).
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