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We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics
for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic
energy, the von Weizsäcker kinetic energy, and the exchange-correlation Coulomb energies under the local
density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory
are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that
the hydrodynamic theory can be applied to investigate the linear response of complex metallic nanostructures,
including quantum effects, by adjusting theory parameters appropriately.
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I. INTRODUCTION

Plasmon resonances, i.e., collective oscillations of free
charge carriers, have the appealing property of being free
of the diffraction limitation of optical waves, and confining
the electric fields to the sub-(optical)wavelength scale with
extremely high intensities [1–3]. Fundamental plasmon phe-
nomena and the continuously developing nanotechnology are
fueling further developments in the fields of nanoplamonics,
metamaterials, and nanophotonics. The emerging novel appli-
cations include cancer therapy [4], surface enhanced raman
spectroscopy to single molecule level [5,6], nanolasers [7,8],
and quantum information processing [9].

Plasmonic materials cover a wide range including typical
conducting media such as metals and doped semiconduc-
tors [10,11], and also low-dimensional materials such as
graphene [12,13]. Different materials share the common
physical picture of the free charge carrier gas mediated
by Coulomb interactions in a polarizable or nonpolarizable
background [10,11]. Guaranteed by the Kohn-Hohenberg
theorem of the density-functional theory (DFT) [14,15] and
the Runge-Gross theorem of the time-dependent density
functional theory (TDDFT) [16,17], the dynamics of the
system can be described by two macroscopic quantities: the
average particle density n(r,t) and the average particle current
density j(r,t) self-consistently with [18,19]

∂n(r,t)
∂t

= −∇ · j(r,t), (1a)

mc

∂j(r,t)
∂t

= n(r,t)qcE(r,t) − ∇ · P(r,t), (1b)

where mc and qc represent the mass and charge of a single
particle, E represents the electric field, and P—the key term—
is a tensor including all internal many-body quantum effects.
The explicit form of P is not known, and different choices
of P depending on the system size scale l lead to different
level theories. If l � λc, where λc represents the characteristic
wavelength of the carrier, one can safely neglect P and arrive
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at the local Drude theory (LDT), which earns the credits
in the large-scale regime [1,2]. The ongoing progressions
in nanofabrications push the size scale down to the deep
nanometer with l ∼ λc [20–26]. This is the regime where the
quantum wave nature of free electron gas, i.e., the term P, starts
to modify the plasmon response via two important effects, the
nonlocality of the electric permittivity in the Thomas-Fermi
screening scale and the electron spill-out in the work function
scale. In this regime, people mainly rely on two approaches of
dealing with P. One approach is DFT and TDDFT to describe
P by (noninteracting) many-body Schrödinger equations
(SEs) [27–29]. The other approach is the hydrodynamic theory
(HT) [30–33] or quantum-continuous mechanics [18,19],
where one approximates P by a simple functional expression.

The simplest version of the HT relies on the Thomas-
Fermi (TF) theory, where P only includes the TF kinetic
energy term [34–37]. The Thomas-Fermi hydrodynamic the-
ory (TFHT) is usually combined with the assumptions of
an infinitely large work function and a uniform equilibrium
charge density. In other words, the electrons cannot escape the
metal volume and in equilibrium they are distributed uniformly
throughout the metal. Mathematically, the infinitely large work
function leads to a hard-wall boundary condition (HWBC).
Within this framework, the electron spill-out is neglected.
This is in spirit close to the widely used local-response
approximation [1].

Comparing with the DFT and TDDFT, the TFHT gains its
advantage of numerical efficiency [38–40], however, suffers
from the blame of the inaccuracy especially for the simple
metals due to the neglect of the electron spill-out [28,29].
Combined with advanced numerical techniques, such as
the finite-element method [38,39,41] or the Green function
surface-integral method [42–45], the HT can be applied to
relatively large and complex plasmonic structures that are
beyond practical reach for the DFT and TDDFT. Additionally,
for the symmetrical structures, such as cylinder and sphere,
the analytical analysis can be possible [46–50]. In this way,
the TFHT is able to get quantum insight of nonlocal effects in
structures, that are on the one hand too small to obey classical
electrodynamics while on the other hand still too large for a
full quantum-mechanical treatment to be feasible.
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Recently, the TFHT has been employed to successfully
explain experimentally observed phenomena, such as the
blueshift of the surface plasmon (SP) resonance of silver
nanoparticles for the dimension decreasing [25], and the
hybridization of the SP resonance between gold nanoparticles
and plane interface with gaps down to the Ångstrom scale [24].
However, when dealing with the monomers of simple metals
such as sodium or aluminium, or dimers of metallic structures
with a sufficiently narrow gap to potentially support quantum-
wave-function overlaps and tunneling, the HWBC neglects
exactly electron spill-out effects [28,29], where a diffusive
electron profile outside the metal is needed. It seems that
the HT itself cannot get out of such disadvantage, and other
semiclassical theories outside the scope of the hydrodynamic
framework, such as the quantum corrected model for the dimer
structure, are needed [51]. We emphasis that this is an issue
entirely related to the HWBC, rather than the TFHT itself.
Relaxing the HWBC and imposing a smooth equilibrium
electron density, the electron spill-out can be characterized by
the TFHT [52,53]. However, such a scheme suffers from the
danger of supporting the unphysical plasmon modes, and an
equilibrium electron density consistent with the HT dynamics
is needed for suppressing the spurious force [54]. The TFHT
can actually predict a smooth electron profile self-consistently.
However, it leads to a vanishing work function [55], implying
that a bounded electron can be excited to a propagating one at
any frequency, which is of course unphysical. Fortunately, with
little effort, the unphysical part can be overcome by including
the first-order correction to the TF kinetic energy term due
to the inhomogeneity of the equilibrium charge density. This
correction is known as the von Weizsäcker (VW) term [56,57]
and one may add the exchange and correlation Coulomb
corrections for the further improvement of accuracy [54,58].
Such extended HT is usually referred to by the abbreviation
TFVWHT [54] or alternatively the quantum-hydrodynamic
theory (QHT) [59,60]. In this paper we will adapt the latter
name. Of course, there are many further refinements of the HT
that go beyond the QHT [18,19,61–66]. Obviously, the more
advanced theory usually involves a more complicated P, which
makes the numerical investigation even more expensive. On
the other hand, the community of nanoplasmonics is largely
interested in the leading-order correction to the classical
electrodynamics and with a call for efficient and faithful
numerical tools. Our choice in this trade-off is the QHT.

In the present paper, we focus on the QHT for characterizing
the linear-response dynamics (LRD) of an inhomogeneous
electron gas in metallic media including both nonlocality and
spill-out effects. The literature is rich on contributions to this
field. It has been demonstrated that the QHT can predict the
work function and surface energy well [58,67], capture the
important features of the linear excitations of free electron
gas [54], and predict the nonlinear dynamics [68]. Recently,
the QHT has been employed to investigate the surface plasmon
response of two-dimensional (2D) nanowires of both simple
metal (sodium) and noble metal (silver), and successfully
predicts the dimension-dependent SP resonance shift [69].
However, a comprehensive understanding of the QHT is still
needed. It is not clear what the specific limitation of the
theory is, how one can adjust theory parameters for optimally
characterizing the surface plasmon response especially in
the high frequency, and how one could further improve the

QHT. In the present paper, we aim to clarify these somewhat
unclear points, and wish to demonstrate both advantages and
disadvantages of the theory transparently. For the convenience
of the analysis, we mainly focus on the simple metals with the
semi-infinite structure.

The remaining part of the paper is organized as follows.
Section II introduces the QHT following the routine of
the semiclassical Hamiltonian approach [36,37]. Section III
analyzes the ground-state electron density and compares the
results of the QHT and DFT. It is noted that the derived
hydrodynamic equations in Sec. II and the numerical results
in Sec. III are not completely new, but rather they serve to give
a self-contained account of the theory. The insight in Sec. III
is to offer a systematical comparison of the electron density in
both the bulk and low electron density regions of the DFT
and QHT analytically, and suggest the spatial dependence
of the von Weizsäcker parameter. The LRD equation is
introduced in Sec. IV. The LRD in a homogenous electron
gas is discussed in Sec. V, and the frequency dependence
of the von Weizsäcker (VW) parameter is demonstrated. In
Sec. VI, we investigate the LRD in a weakly inhomogeneous
electron gas, and suggest a new correction term and a slight
modification to the theory in the high-frequency regime based
on the microscopic considerations. In Sec. VII, the LRD in the
electron-tail region is discussed. It is found that mathematically
the QHT supports four longitudinal modes among which two
modes are justified to be physical. Further, we interpret the
two physical modes, and show their close relation with the
photoelectric effect. In Sec. VII, the remarks on the findings of
Secs. V–VII are given to better guide the readers. In Sec. IX, we
define a both physically and mathematically correct boundary
condition (BC) for the LRD. In Sec. X, the LRD is investigated
in great detail by numerical analysis, and the results from the
QHT are compared with the quantum mechanical calculations
by the time-dependent local-density approximation (TDLDA)
method. It is highlighted that a universal relation between
the multipole surface-plasmon resonance and the threshold
frequency of the photoelectric effect is shown and proven, and
a useful quantity called opposite centroid frequency region is
defined for identifying the qualitatively validity region of the
QHT. Finally, Sec. XI summarizes the paper. Some detailed
derivations and discussions are given in Appendixes A and B.

II. HYDRODYNAMIC DESCRIPTION

Macroscopic hydrodynamic theory for a free electron
gas can be derived from different starting points, such
as the semiclassical Hamiltonian including the quantum
functional energy [36,37], the Boltzmann equation [70], the
one-particle Winger distribution function [59,60] or even
quantum many-body SEs [18,19]. Here, from the semiclassical
Hamiltonian [36,37], we outline the route to the QHT. The
semiclassical Hamiltonian in the absence of a magnetic field
is [36,37]

H = 1

2
me

∫
d3r n(r,t)|∇S(r,t)|2 + G[n(r,t)]

+ 1

2
e2

∫
d3rd3r′ n(r,t)n(r′,t)

4πε0|r − r′|
− e

∫
d3r n(r,t) [Vion(r) + Vext(r,t)], (2)
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where S(r,t) is the scalar velocity potential which relates to
the velocity field v(r,t) by v = −∇S. Furthermore, n(r,t) is
the density of the electron gas to be determined, G[n(r,t)]
accounts for the internal many-body quantum energy, Vion(r)
denotes the static electric potential from the positive ion
background with a constant density nion inside the metal, and
Vext(r,t) refers to the external electric potential. We note that
the functional G usually includes the following contributions:
the internal kinetic energy, the exchange Coulomb energy,
and the correlation Coulomb energy. Assuming that n(r,t) is
canonically conjugated with meS, the Hamiltonian’s equations
(HEs) for the system are

∇ · (nv) = −∂n/∂t,

me

dv
dt

= −∇ δG

δn
− e∇φ,

where φ represents the total electric potential felt by a single
electron and has the expression,

φ = −e

∫
d3r ′ n(r′,t)

4πε0|r − r′| + Vion(r) + Vext(r,t).

The HEs can be employed to investigate our main interest,
i.e., the LRD of the system responding to the external electric
potential Vext. To proceed, we assume a weak external pertur-
bation. In the according linearization, the various fields are ex-
pressed as n(r,t) = n0(r) + n1(r,t), φ(r,t) = φ0(r) + φ1(r,t),
v(r,t) = v1(r,t), and δG/δn = (δG/δn)0 + (δG/δn)1. Here,
the quantities with the subscript “0” refer to the unperturbed
equilibrium case (the ground state), while the subscript “1”
represents the small nonequilibrium corrections associated
with the external driving. Clearly, this implies that the
equilibrium electron density n0 should satisfy

(
δG

δn

)
0

+ eφ0 = μ, (3)

where the chemical potential μ is constant throughout space.
In this way, the linearized equations for the excited electron
density n1 and the electron charge current J1 = −en0v1

become

∇ · J1 = e
∂n1

∂t
, (4a)(

∂

∂t
+ γ

)
J1 = −ε0ω

2
p∇φ1 + n0e

me

∇
(

δG

δn

)
1

, (4b)

where ωp =
√

nione
2/meε0 represents the plasma frequency of

the bulk metal, and the phenomenological damping rate γ is
added by hand. Equations (4a) and (4b) are the hydrodynamic
equations determining the LRD of the system.

A. Functional energy

The quantum functional energy G plays a central role in
the QHT, and is expressed by the integral,

G =
∫

dr g[n(r,t)], (5a)

where g is given by

g = �
2π3

10me

(
3n

π

)5/3

+ λw�
2

8me

∇n · ∇n

n

− 0.0588
e2n4/3

ε0
− 0.035

0.6024 + 7.8aH n1/3

e2n4/3

ε0
, (5b)

with aH = 0.529 Å being the Bohr radius. The first term
of g is known as the Thomas-Fermi (TF) term [71,72],
which represents the quantum-kinetic energy for a uniform
electron gas. The second term is the von Weizsäcker (VW)
term or the quantum-pressure energy term [56,60], which
gives the leading-order correction to the TF term due to the
inhomogeneity. The third and fourth terms represent Wigner’s
exchange and correlation energies, respectively, under the
local-density approximation (LDA) [73].

For the quantum functional energy, the TF and VW terms
are the most important ones. In essence, the HT and the more
advanced DFT and TDDFT differ by those terms. In particular,
in the DFT or TDDFT, the quantum-kinetic energy is more
precisely included in the (noninteracting) many-body SEs.

The TF term is valid under the local-equilibrium approx-
imation (LEA) [74] that the electron gas obeys Fermi-Dirac
statistics locally. The LEA holds in the low-frequency regime
where ω � γ , since the damping can relax the perpetu-
ated electrons to the local-equilibrium configuration quickly.
However, in the high-frequency regime where ω � γ , such
approximation breaks down. In this sense, a HT beyond the
local equilibrium is needed [63,64]. In the bulk region of
the metal, where the electron gas is nearly homogenous, this
could be achieved by a slight modification to the theory [70].
However, in the surface region (the region near the metal
boundary), where the electron gas varies on the atomic scale
and interesting dynamics occur, it is challenging to extend the
QHT beyond the LEA. In the present paper, for simplicity,
we will restrict our discussion to the LEA. As demonstrated
later, despite the problematic assumption of the LEA in the
high-frequency regime, it still allows qualitatively correct
predictions.

For the VW term, the parameter λw is critical. For a weakly
inhomogeneous electron gas, it is well known that λw = 1/9 in
the low-frequency regime [14,37], while it approaches 1 as the
frequency increasing (demonstrated in Sec. V B). Additionally,
for a single quantum state, we have λw = 1 [30,60]. This
somehow suggests that λw should approach 1 in the electron-
tail region (the region far outside the metal). The reason
is that the response in the electron-tail region is dominated
by quantum state near the Fermi level, which resembles the
single state. The same conclusion can also be reached from
different perspectives in Secs. III and VII. In summary, λw

should depend on frequency and vary in space. However, the
exact dependence is not clear in the surface region (the region
around the metal boundary). To work around this obstacle,
one usually simply sets λw to be a constant between 1 and
1/9 [54,58–60,67,68]. This is also the chosen scheme in the
present paper.

The hydrodynamic theory with g only containing the TF
term represents the simplest hydrodynamic theory, i.e., TFHT.
Here, we note that, in the QHT, there are three basic parameters
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namely nion, γ (damping for the LRD), and λw, which must be
known before specific analysis and numerical computations.
For the TFHT, the parameter λw is not required due to the
absence of the VW term, and accordingly there are two basic
parameters. The main differences between QHT and TFHT
will be discussed.

III. GROUND-STATE ELECTRON DENSITY

To predict the LRDs by the QHT, the equilibrium electron
density n0 is needed. In this section, we illustrate the numerical
computation of n0. Besides that, the analytical comparisons of
the electron density in the bulk and electron-tail regions by the
DFT and QHT are given, and the spatial dependence of λw is
suggested.

A. Equations

First, we define the following quantities: EF the Fermi
energy of the uniform electron gas with the density equal
to nion; vF the Fermi velocity which relates to the Fermi
energy through a parabolic dispersion relation EF = mev

2
F /2.

We relate n0, φ0, and μ in Eq. (3) with the following
dimensionless quantities f0, φ′

0, and μ′ by f0 = √
n0/nion,

φ′
0 = φ0ε0k

2
TF/enion where kTF is defined below Eq. (6), and

μ′ = μ/EF . Then, Eq. (3) is expressed in a dimensionless
form,

f
4/3
0 + C0f

4/3
0 − C1f

2/3
0 − C2

∇2f0

f0
− 2φ′

0 = μ′, (6)

where

C0 = 2

3

0.035X1(
0.6024 + X1f

2/3
0

)2

k2
TF

n
2/3
ion

,

C1 = 8

3

(
0.0588 + 0.035

0.6024 + X1f
2/3
0

)
k2

TF

n
2/3
ion

,

C2 = λw

k2
F

,

kTF = ωp

vF

, kF = mevF

�
,

X1 = 7.8aH n
1/3
ion . For the TFHT, we simply set C0 = C1 =

C2 = 0 in Eq. (6). Besides Eq. (6), φ′
0 and f0 also relate to

each other by Poisson’s equation with

1

k2
TF

∇2φ′
0 = f 2

0 − f 2
ion, (7)

where fion = 1 in the metal region and fion = 0 outside the
metal. For a neutral system, the condition that the total charge
of the electrons equals that of the positive ions should be
specified.

B. Numerical analysis

Equations (6) and (7) constitute two coupled nonlinear
equations. The equations can be solved by the finite-element
method (FEM) utilizing the commercially available code
COMSOL MULTIPHYSICS 4.3B efficiently. For this, one needs
to transform Eqs. (6) and (7) into the corresponding weak
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FIG. 1. (Color online) (a) The ground-state electron density n0

for the simple metals with rs = 4 and rs = 2. The results are
calculated by the TFHT, QHT, and DFT for the semi-infinite metal. In
the QHT, we choose λw = 0.5 for rs = 4, and λw = 0.25 for rs = 2.
(b) Work function versus λw predicted by the QHT. The square
markers represent the values of λw giving the same work function
as the DFT.

forms [75], then put them down in the weak-form environment
of COMSOL MULTIPHYSICS, and solve them by the nonlinear
iterative solver. The numerical complexity and speed of
the QHT have obvious advantages over the DFT since the
computation of the single particle eigenwave function is not
needed. For the numerical illustration, we focus on the case
that the metal is located in the semi-infinite space x < 0. The
scheme can also be applied to more complex geometries, such
as cylinders demonstrated in Ref. [69].

Even though similar results can be found in Ref. [58],
they are still given for demonstrating the validity of our FEM
computation and also better understanding of the analytical
analysis in Sec. III C. Two different metals with rs = 4
(sodium) and rs = 2 (aluminum) are considered. Here, the
dimensionless lattice parameter rs is determined by nion with
rs = (3/4πnion)1/3/aH . For the TFHT and QHT calculations,
we employ the FEM. The VW parameter λw in the QHT is
chosen to be λw = 0.5 for rs = 4, and λw = 0.25 for rs = 2.
The particular values of λw reproduce the electron density
of the DFT reasonably. For the DFT calculations, we follow
the numerical routine suggested by Kohn and Lang [55]. The
results are plotted in Fig. 1(a). In the surface region around
x = 0, it is seen that the QHT has a better agreement with the
DFT than the TFHT. In the bulk region, the density oscillations
in the DFT are noticeable especially for the case rs = 4.
However, for the QHT, the oscillations are nearly invisible
due to the exponential damping behavior as analyzed in
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TABLE I. Approximate solutions of f0 in the bulk region and the
electron-tail region for the TFHT, QHT, and DFT. aT,Q, bT,Q,D , and
ηQ,F are constants.

Models f0b (Bulk region) f0t (Electron-tail region)

TFHT 1 + aT e
√

1/3kTFx 101.5(1 + bT /x)/x3

QHT 1 + aQ cos(kLRx + ηQ)ekLIx bQe−kQx

DFT 1 + 3 cos(2kF x + ηF )/8k2
F x2 bDe−kDx/x

Sec. III C, and only a small bump near x = 0 can be observed.
Additionally, we also calculate the work function. It is found
that both the DFT and QHT predict a positive nonzero value,
while the TFHT gives a zero value, agreeing with the analysis
in Sec. III C. In Fig. 1(b), we plot the work function W

Q
F

predicted by the QHT as a function of λw. It is found that λw

around 0.435 for rs = 4, and λw around 0.295 for rs = 2 give
the work function close to the DFT value, as indicated by the
square markers in the figure. The positions of the markers are
close to the values of λw chosen in Fig. 1(a), where decent
agreements between the QHT and DFT have been observed.

C. Analytical analysis

It is hard to find analytical solutions of Eqs. (6) and (7)
for complex geometries. For simplicity and without losing
any important physics, we consider the semi-infinite metal
structure as in Sec. III B. In this case, it becomes possible to
find approximate analytic solutions.

In the bulk region, we denote f0 by f0b, and express
f0b = 1 + f

(1)
0b , where f

(1)
0b accounts for the small spatially

inhomogeneous correction. Treating f
(1)
0b as the perturbation

term, and analyzing Eqs. (6) and (7), it is found that f
(1)
0b to

the leading order satisfies the same equation as that for the
linearly excited static longitudinal mode in the homogenous
background, which will be discussed in Sec. V in detail. The
wave number kL of the static longitudinal mode is determined
by

εL
m(0,kL) = 0,

where εL
m represents the longitudinal permittivity, and is

expressed in Eq. (11b). In the QHT, there are formally four
complex-valued solutions for kL. In the TFHT, there are for-
mally only two solutions for kL given by the entirely imaginary
expression ±i

√
1/3kTF. With the boundary condition that

f
(1)
0b → 0 as x → −∞, the general solution of f

(1)
0b can be

written down. In Table I, we summarize the results for the
TFHT, QHT, and also DFT. The DFT result is derived in
Ref. [55]. It is seen that the QHT predicts the oscillations
of the electron density in the bulk region like the DFT, but
the oscillations decay much faster (exponentially decaying)
than the DFT (1/x2 decaying). In the TFHT, the oscillations
disappear, which is attributed to the negligence of the VW
term.

In the electron-tail region, we denote f0 by f0t . In this
region, f0t � 1. Accordingly, the first three terms on the
right-hand side (RHS) of Eq. (6) are negligible, and Eq. (6) is

approximate to

∇2f0t − W
Q
F

C2EF

f0t = 0,

where W
Q
F = − limx→+∞(μ + 2φ0) is the work function

predicted by the QHT. The work function is the minimum
energy needed to eject an electron from the bulk metal into the
vacuum. With the boundary condition that f0t → 0 as x →
+∞, we have f0t 
 bQe−kQx , where kQ relates with W

Q
F by

W
Q
F = λw

�k2
Q

2me

, (8)

where bQ is a constant. However, for the TFHT, Eq. (6)
directly implies that limx→+∞(μ + 2φ0) = 0, i.e., a zero work
function. Additionally, by the analysis to Eqs. (6) and (7) [76],
the approximate solution of f0t for the TFHT is found to be
f0t 
 101.5(1 + bT /x)/x3, where bT is a constant. For the
DFT, the electron density can be expressed by the integration
of the Kohn-Sham orbitals [55], i.e.,

n0(x) = 1

π

∫ kF

0
dk

(
k2
F − k2

)|ψk(x)|2.

In the electron-tail region, ψk is simply an exponentially
decaying function, and the integration has the approximate
solution f0t 
 bDe−kDx/x, where bD is a constant, and kD

relates with the DFT work function WD
F by

WD
F = �k2

D

2me

,

which is of exactly the same form as Eq. (8), provided
that λw = 1. This indicates that λw approaching 1 in the
electron-tail region can result in a better agreement between the
QHT and DFT. Together with the fact that λw = 1/9 in the bulk
region for the ground state [14,37], we expect that an improved
QHT can be consistent with such spatial dependence of λw.

The approximate solutions of f0t for the TFHT, QHT, and
DFT are summarized in Table I. It is seen that the QHT and
DFT share the same feature that f0t contains the exponentially
decaying term, except that an additional 1/x term appears in
the DFT. In the TFHT, f0t is dominated by the 1/x3 term,
which decays much slower. In conclusion, the above results
indicate that the QHT mimics the DFT better than the TFHT.

IV. EQUATIONS FOR LINEAR-RESPONSE DYNAMICS

The LRD due to the external driving is determined by
Eqs. (4a) and (4b). In particular, Eq. (4b) can be expressed
in a more transparent form as(

∂

∂t
+ γ

)
∂J1

∂t
= ε0ω

2
pf 2

0
∂E1

∂t
+ β2

(
∇ − 2∇f0

f0

)
Q1, (9)

where

Q1 = (N (0) + N(1) · ∇ − N (2)∇2)∇ · J1, (10)

115416-5



WEI YAN PHYSICAL REVIEW B 91, 115416 (2015)

with

β =
√

1

3
vF ,

N (0) = f
4/3
0 + C0

v2
F

β2
f

4/3
0 − C1

6

v2
F

β2
f

2/3
0 − C3

3

v2
F

β2
f 2

0

+ 2N (2)

(∇2f0

f0
− |∇f0|2

f 2
0

)
,

N(1) = 2N (2) ∇f0

f0
,

N (2) = C2

4

v2
F

β2
,

C3 = 2

3

0.035X2
1

(0.6024 + X1f 2/3)3

k2
TF

n
2/3
ion

,

and E1 represents the electric field. In Eq. (9), we have β =√
1/3vF as a result of the LEA. However, when ω � γ , the

LEA breaks down, and β is accordingly modified to
√

3/5vF

at least in the bulk region [70], which is discussed in Sec. V.

V. LINEAR-RESPONSE DYNAMICS IN A HOMOGENOUS
ELECTRON BACKGROUND

Incorporating Eq. (9) with Maxwell’s equations, the LRDs
of the system can be predicted. Before going to the detailed
numerics, we would like to investigate the rich physical
indications of Eq. (9) by analytical analysis in Secs. V–VII
for three different cases: a homogenous electron gas, a weakly
inhomogeneous electron gas, and the electron-tail region. In
this section, we focus on the homogenous case.

A. Transverse and longitudinal permittivities

Deep into the bulk region of the metal, the electron gas is
nearly homogenous with ∇f0 → 0. In this case, decomposing
the fields into the transverse and longitudinal components, and
relating the electric field with the polarization field P1 (J1 =
∂P1/∂t), we extract the familiar transverse and longitudinal
permittivities [32],

εT
m(ω) = 1 − ω2

p

ω2 + iωγ
, (11a)

εL
m(ω,kL) = 1 − ω2

p

ω2 + iωγ − β2k2
L

(
N (0) + N (2)k2

L

) . (11b)

The longitudinal modes are determined by εL
m(ω,kL) = 0.

Neglecting the damping, we summarize the solutions of kL in
Table II. For the QHT, the longitudinal modes support four
solutions. When ω < ωq where

ωq = Re

(
ω2

p − N2
0 β2

4N2

)
,

kL is complex valued, implying that the excited charges
undergo damped oscillations rather than purely exponential
decay. In the static case, such complex valued longitudinal
modes determine the leading-order inhomogeneity of the
ground-state electron density as discussed in Sec. III. When

TABLE II. Longitudinal wave numbers kL for the TFHT and QHT.

kL

QHT TFHT
Frequency (4 solutions) (2 solutions)

0 < ω < ωq ±kLR ± i kLI ±i kLI

ωq < ω < ωp ±i kLI1; ±i kLI2

ω > ωp ±i kLI; ±kLR ±kLR

ωq < ω < ωp, kL turns entirely imaginary. When ω > ωp,
two of the four kL solutions become real values corresponding
to longitudinal plasmon modes known to propagate in the
bulk region of the metal. For the TFHT, we have N (0) = 1
and N (2) = 0 in Eq. (11b). In this case, only two solutions
exist. Below the plasma frequency, kL solutions are entirely
imaginary; above the plasma frequency, kL are completely real
valued corresponding to propagating longitudinal modes.

In Fig. 2, we plot kL as a function of ω for the simple metal
with rs = 4. In this figure, we choose β = √

3/5vF and λw = 1
according to the discussions in the following subsection. The
observations in Fig. 2 are consistent with Table II.

B. Discussions on β and λw

The parameters β and λw are of central importance in
the QHT. Here, we want to see what specific values of β

and λw can give the most accurate prediction of the LRD
for the homogenous electron gas. For this, we compare the
longitudinal permittivity in Eq. (11b) with that derived from
the more advanced many-body random-phase approximation
(RPA) method. In Ref. [70], the comparisons were performed
to the second order of kL, and the frequency-dependent
expression of β was given as a correction of the HT,
which is especially important in the high frequency. Here,
we extend the comparisons up to the fourth order of kL,
and derive the frequency-dependent expression of λw as the
main contribution in this subsection. Since the exchange and
correlation interactions are neglected in the RPA formula, we
here also neglect exchange and correlation interactions for
the QHT by setting N (0) = 1 in Eq. (11b). The neglec is not
important to β and λw, because such two parameters originate

 

 

 

 

QHT, Mode2
QHT, Mode1
TFHT

Im(kL/kF )

ω
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Re(kL/kF )
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FIG. 2. (Color online) Longitudinal wave number kL versus fre-
quency ω for the simple metal with rs = 4. Only the modes with
Im(kL) � 0 are plotted.
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from the quantum kinetic energy (the TF and VW terms), not
from the exchange and correlation interactions.

First, we consider the low-frequency regime where ω � γ .
If γ = 0, this just reduces to the static case ω = 0. The static
RPA permittivity for k � kF has the form [11],

εR
m(0,kL) 
 1 + 3k2

TF

k2
L

(
1 − 1

12

k2
L

k2
F

)
,

which agrees with Eq. (11b) to the same expansion order as
long as β = vF

√
1/3 and λw = 1/9. Next, consider the high-

frequency regime where ω � γ , which is usually satisfied
for ω at the optical frequency. The RPA [11] and QHT
permittivities for kL � ω/vF have the following approximate
expressions:

εR
m(ω,kL) 
 1 − ω2

p

ω2

[
1 + 3k2

Lv2
F

5ω2
+

(
3

7
+ ω2

4v2
F k2

F

)
k4
Lv4

F

ω4

]
,

εL
m(ω,kL) 
 1 − ω2

p

ω2

[
1 + k2

Lβ2

ω2
+

(
β4

v4
F

+ λwω2

4v2
F k2

F

)
k4
Lv4

F

ω4

]
.

Clearly, if we set β = √
3/5vF and λw = 1, the above two

expressions achieve a good agreement except the slight
discrepancy occurs between the terms 3/7 and β4/v4

F = 9/25.
The above discussions indicate that both β and λw depend

on frequency. In particular, we have β = vF

√
1/3 and λw =

1/9 for ω � γ , while β = vF

√
3/5 and λw = 1 for ω � γ .

In the intermediate frequency region where ω is comparable
with γ , β and λw are expected to depend on both ω and γ . In
Ref. [70], Halevi derived such an expression for β with

β =
√

3ω/5 + iγ /3

ω + iγ
.

The equation gives the correct low- and high-frequency limits,
i.e., β = √

1/3vF for ω � γ and β = √
3/5vF for ω � γ .

Here, following Halevi’s recipe, we derive the expression for
λw. Including the damping within Mermin’s relaxation-time
approximation scheme [74], the correct RPA permittivity
formula becomes

εR′
m (ω,kL) = 1 + ω′ [εR

m(ω′,kL) − 1
]

ω + iγ
[
εR
m(ω′,kL) − 1

] / [
εR
m(0,kL) − 1

] ,

where ω′ = ω + iγ , and the expression of εR
m can be found

in the above. Employing Taylor’s expansion to εR′
m up to the

fourth order of kL, and matching the derived one with the QHT
permittivity, λw is founded to be

λw = ω + iγ /9

ω + iγ
. (12)

Equation (12) leads to λw = 1/9 for ω � γ , and λw = 1 for
ω � γ .

VI. LINEAR-RESPONSE DYNAMICS IN A WEAKLY
INHOMOGENEOUS BACKGROUND

In Sec. V, we have shown that the QHT can describe
the LRD in the homogenous electron gas well, and the two
important parameters β and λw both depend on frequency.
Next, it is natural to ask whether the same conclusion holds

when the electron gas becomes inhomogeneous? Do the
coefficients related to the inhomogeneity of the ground-state
density in Eq. (9) have the correct forms? Obviously, these
are in general difficult questions while insights into the
weakly inhomogeneous electron gas may shed some light for
constructing a better HT.

For simplicity, we assume that the electron gas is inhomo-
geneous only in the x direction with n0(x) = nion + nih(x).
Here, nih represents the small inhomogeneity around nion with
nih � nion and |dnih/dx|/nih � kF . Furthermore, we assume
that nih is induced by some self-consistent static potential.
Our strategy is to extract a linear-response equation from the
microscopic considerations, and compare the derived equation
with the QHT one. Employing the self-consistent field (SCF)
method [10,77], the dynamics of the system is governed by
the single-particle Liouville equation,

[Ĥ,ρ̂] = i�
∂ρ̂

∂t
, (13)

where ρ̂ is the operator associated with the single-particle den-
sity matrix, and Ĥ represents the single-particle Hamiltonian
expressed by

Ĥ = Ĥ0 + Vsc(x,t),

with Ĥ0 = −�
2∇2/2me representing the free-electron Hamil-

tonian and Vsc being the self-consistent potential. Further, we
assume that Vsc only includes the electric potential, which
simply corresponds to setting C0 = C1 = C3 = 0 in Eq. (9).
Next, we split Vsc into Vsc = Vsc,0 + Vsc,ω with

Vsc,0 =
∫

dk vsc,0(k)eikx,

Vsc,ω =
∫

dk vsc,ω(k)eikx−iωt ,

where Vsc,0 is the static potential which induces nih, while Vsc,ω

represents the dynamic potential which excites the oscillating
density nω. Below, we will suppress the time dependence e−iωt

for ease of notation.
Treating Vsc as the small perturbation, we approximate ρ̂ as

ρ̂ 
 ρ̂0 + ρ̂
(1)
0 + (

ρ̂(1)
ω + ρ̂(2)

ω

)
, (14)

where ρ̂0 represents the equilibrium single-particle density
matrix, the superscripts “(1)” and “(2)” denote the first- and
second-order correction terms due to Vsc, respectively, and
the subscripts “0” and “ω” represent the static and dynamic
components, respectively. ρ̂

(1)
0 gives the inhomogeneity part

of the background electron density nih to the first order in
Vsc,0, which is accurate enough for the weakly inhomogeneous
electron gas. Likewise, ρ̂(1)

ω gives the excited oscillating
electron density nω to the first order in Vsc,ω, while ρ̂(2)

ω gives nω

to the order in Vsc,0Vsc,ω, which accounts for the leading-order
contribution due to the ground-state inhomogeneity. We note
that ρ̂0 has the property,

ρ̂0 |k〉 = f (Ek) |k〉 ,

where 〈r|k〉 = eikr satisfying Ĥ0 |k〉 = Ek |k〉 with f (Ek)
being the Fermi-Dirac distribution function. Here, we take
the zero temperature expression of f (Ek), i.e., f (Ek) = 1 for
Ek � EF and f (Ek) = 0 for Ek > EF .
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Taking Eq. (14) into Eq. (13) and extracting the same order
terms, we get[

Ĥ0,ρ̂
(1)
0

] + [
Vsc,0, ρ̂

(1)
0

] = 0,[
Ĥ0,ρ̂

(1)
ω

] + [
Vsc,ω, ρ̂

(1)
0

] = −i�ωρ̂(1)
ω ,[

Ĥ0,ρ̂
(2)
ω

] + [
Vsc,ω, ρ̂

(1)
0

] + [
Vsc,0, ρ̂

(1)
ω

] = −i�ωρ̂(2)
ω .

These equations, together with nih = Tr[δ(x − xe)ρ̂(1)
0 ] and

nω = Tr[δ(x − xe)(ρ̂(1)
ω + ρ̂(2)

ω )], lead to

nih(x) =
∫

dk χ (0,k)vsc,0(k)eikx,

nω(x) =
∫

dk χ (ω,k)vsc,ω(k)eikx

+
∫∫

dk1dk2 ξ (ω,k1,k2)vsc,0(k1)vsc,ω(k2)ei(k1+k2)x,

where

χ (ω,k) = 1

2π3

∫
f (Eq−k) − f (Ek)

�ω + Eq−k − Ek
dq,

relating to the RPA permittivity by εR
m(ω,k) = 1 −

e2χ (ω,k)/ε0k
2 [10,11], and

ξ (ω,k1,k2) = 4k2(k1+k2)

ω2k1me − �2k1k
2
2(k1+k2)2

η,

with

η = χ (0,k1)k1+χ (ω,k2)k2−χ (ω,k1+k2)(k1+k2).

Expanding χ to the fourth order in k, we cast the expression
of nω into the differential equation form, and compare the
derived equation with Eq. (9) to the first order of nih for being
consistent with the expansion orders applied in Eq. (14). In
the low-frequency regime, the derived equation agrees with
Eq. (14) exactly with β = √

1/3vF and λw = 1/9. However,
in the high-frequency regime, the derived equation shows a
slightly different form with

∂2J1

∂t2
= ε0ω

2
pf 2

0
∂E1

∂t
+ N (3)J1 + β2

(
d

dx
− 2df0

f0dx

)
Q′

1,

(16)

where β = vF

√
3/5 and λw = 1 agreeing with the homoge-

nous case, the new coefficient N (3) is

N (3) = v2
F

[
1

3f 2
0

d2f 2
0

dx2
+ 2

9k2
F f 2

0

d4f 2
0

dx4

]
,

and the modified term Q′
1 shares a similar form as Q1 in Eq. (9)

except that N (0) being modified to

N (0) = f
4/3
0 + C0

v2
F

β2
− C1

6

v2
F

β2
f

2/3
0 − C3

3

v2
F

β2
f 2

0

+ 2N (2)

(
11

3

d2f0

f0dx2
− 13

3

∣∣∣∣df0

dx

∣∣∣∣
2 1

f 2
0

)
. (17)

Here, it is worth noting that the new term N (3)J1 vanishes in
the homogenous case, while it contributes to Eq. (16) as the
emergence of the inhomogeneity. Thus, in the surface region
where the inhomogeneity is strong, such a term is expected to

play an important role. Conclusively, the differences between
Eqs. (16) and (9) imply the challenge for the QHT in the
high-frequency regime on the one hand, and suggest possible
improvements on the other hand.

VII. LINEAR-RESPONSE DYNAMICS IN
THE ELECTRON-TAIL REGION

In the electron-tail region, the electron density is negligible.
For this reason, people may intuitively expect no important
dynamics occurring. However, in this section, by analyzing
the LRDs in the electron-tail region, we demonstrate the subtle
mathematical solutions which should be treated carefully, and
their important physical meaning related to the photoelectric
effect.

A. Solution analysis

In this subsection, we will analyze the solutions of Eq. (9)
in the electron-tail region where f0 � 1. Neglecting the
damping, Eq. (9) under the quasistatic approximation could
be rewritten as

−ω2∇2φ1 = −ω2
p∇ · f 2

0 ∇φ1 + β2∇ ·
[
∇ − 2∇f0

f0

]
,

×{[N (0) + N(1) · ∇ − N (2)∇2]∇2φ1}, (18)

where φ1 is the electric potential which relates with the electric
field E1 by E1 = −∇φ1.

For simplicity, considering the semi-infinite metal system
located in x < 0, and assuming that the system is driven
by an external potential ek||x+ikyy+ikzz where k2

|| = k2
y + k2

z . In
this case, we know that f0 in the electron-tail region is an
exponentially decaying function with

f0 ∝ e−kQx.

This implies that N(1) is approximately equal to −N (2)kQx̂, and
the term N (0) is negligible comparing with the terms N(1) and
N (2). Then, we denote the external potential and its induced
transverse potential by φ

(0)
T with

φ
(0)
T = ek||x + Re−k||x, (19)

where R represents the reflection coefficient of the transverse
potential, and the term eikyy+ikzz is suppressed. Taking φ

(0)
T into

Eq. (18), the associated longitudinal potential denoted as φ
(0)
L

to the leading order is found to be

φ
(0)
L 
 −2kdk||ω2

pf 2
0

ω2 − 4β2N (2)k2
dk

2
||

(ek||x−Re−k||x)e−2kQx. (20)

Additionally, it is found that the first term and the term
concerning N (0) on the RHS of (18) are much smaller than
other terms. If we neglect these small terms, the equation will
admit the longitudinal solution denoted as φ

(1)
L satisfying

β2∇ · (∇+2kQx̂)N (2)(2kd x̂ · ∇+∇2)φ(1)
L −ω2φ

(1)
L = 0.

Assuming that φ
(1)
L has the exponential solution eikLxx+ikyy+ikzz,

we derive that

kLx = ikQ ± i

√
k2
‖ + k2

Q ± ω

β
√

N (2)
. (21)
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φ
(1)
L have four independent solutions, whose important indica-

tions will be discussed in Sec. VII B.
φ

(0)
L and φ

(1)
L determine the induced electron density n1 in

the tail region. We can split n1 into

n1 = n
(0)
1 + n

(1)
1 ,

where n
(0)
1 and n

(1)
1 correspond to φ

(0)
L and φ

(1)
L , respectively.

The expression for φ
(0)
L results in

n
(0)
1 ∝ e−2kQx+k||x − Re−2kQx−k||x.

For n
(1)
1 , its behavior is simply determined by the four solutions

of kLx in Eq. (21).

B. Selection of physical solutions

In the QHT, we are faced by the challenge of having
in general four solutions as compared to only two in the
TFHT. This suggests that not all of the four solutions may
be physically relevant. In order to analyze kLx in Eq. (21) and
select the physical ones, we denote the four solutions of kLx as

k
(1)
Lx = ikQ − i

√
k2
‖ + k2

Q + ω/β
√

N (2),

k
(2)
Lx = ikQ + i

√
k2
‖ + k2

Q + ω/β
√

N (2),

k
(3)
Lx = ikQ − i

√
k2
‖ + k2

Q − ω/β
√

N (2),

k
(4)
Lx = ikQ + i

√
k2
‖ + k2

Q − ω/β
√

N (2),

where the square-root operator is defined with
√

1 = 1 and√−1 = −i. Further, we define an important quantity ωQ
c with

ωQ
c = �

(
k2
Q + k2

‖
)√

λw

2me

, (23)

which leads to k2
‖ + k2

Q − ωQ
c /β

√
N (2) = 0. In Sec. VII D,

it will be demonstrated that ωQ
c just defines the threshold

frequency of the photoelectric effect.
To select the physical solutions among k

(i)
Lx (i = 1,2,3,4),

we take the special case k|| = 0 as an example. In this case,
when ω < ωQ

c , k
(i)
Lx are all imaginary numbers. In particular,

k
(1)
Lx has Im[k(1)

Lx] < 0 representing the amplifying solution.
For a passive (or lossy) medium, the electron density cannot
amplify, and accordingly k

(1)
Lx is not physical. The other

three formal solutions all represent decaying solutions with
Im[k(2)

Lx] > 2kQ, Im[k(3)
Lx] < kQ, and kQ < Im[k(4)

lx ] < 2kQ. To
analyze these decaying solutions, we borrow insights from
quantum mechanics. The linear-response theory of quantum
mechanics tells us that

n1 ∝ ψ∗
0 ψ1 + ψ0ψ

∗
1 ,

where ψ0 represents the ground-state wave function with
ψ0 ∝ √

n0 ∝ e−kQx qualitatively, and ψ1 represents the excited
state wave function with ψ1 ∝ e−kex . Since the ground state
with less energy should be more bounded than the excited
state, we deduce that Re(ke) < kQ. Thus, there is n1 ∝ e−αx

with kQ � Im(α) > 2kQ. This leads to the conclusion that
the mode k

(3)
Lx is not physical since Im[k(3)

Lx] < kQ, while the

modes k
(2,4)
Lx are physical with the one k

(4)
Lx being dominant.

When ω > ωQ
c , k

(1)
Lx and k

(2)
Lx keep the same characteristics as

the case ω < ωQ
c . However, k

(3,4)
Lx become complex numbers

with Re[k(3)
Lx ] < 0 and Re[k(4)

Lx ] > 0. The complex valued kLx

indicates the propagating characteristics of the excited state.
Respecting the causality relation that the excited propagating
wave can only be outgoing, the mode k

(4)
Lx is justified to

be physical, not the mode k
(3)
Lx . Conclusively, in the whole

frequency range, the modes k
(2,4)
Lx are the physical ones. For

k|| �= 0, the same conclusion can be drawn following similar
arguments.

C. Interpretation of physical solutions

In the above subsection, we conclude that the modes
k

(2,4)
Lx are the physically relevant ones among the four formal

mathematical solutions. Here, we will further justify this
conclusion seriously, and give an unambiguous interpretation
of the physical modes based on microscopic quantum analysis.
Considering the semi-infinite metal system located in x < 0,
and driving this system by an external electric potential
Vext(x) exp(ik||y − iωt), the linearly excited electron density
n1 within the framework of the Kohn-Sham orbitals is

n1 = n+
1 + n−

1 , (24)

where

n+
1 = 1

π3

∫∫
k2

1+k2
2<k2

F

dk1dk2

√
k2
F − k2

1 − k2
2ψ

∗
k1

ψ+
k1k2

,

n−
1 = 1

π3

∫∫
k2

1+k2
2<k2

F ,

dk1dk2

√
k2
F − k2

1 − k2
2ψ

0
k1

ψ−∗
k1k2

.

ψk represents the electron wave functon in the absence of the
perturbation satisfying[

− �
2

2me

d2

dx2
+ Veff(x)

]
ψk(x) = �ωkψk(x),

where Veff represents the effective potential which a single
electron experiences [15,55]. ψ±

k1k2
represent the linear order

corrections to ψk1 , and are expressed by

ψ+
k1k2

(x) =
∫

dx ′G+
k1k2

(x,x ′)ψk1 (x ′)Vscf(x
′),

ψ−
k1k2

(x) =
∫

dx ′G−
k1k2

(x,x ′)ψk1 (x ′)V ∗
scf(x

′),

where Vscf is the self-consistent potential due to the external
potential. Furthermore, G±

k1k2
are the single-particle Green’s

functions satisfying[
− �

2

2me

d2

dx2
+Veff(x)+U±

eff

]
G+

k1k2
(x,x ′) = −δ(x − x ′),

where

U±
eff = −�

(
ωk1 ± ω0

) + �
2k2

|| + 2�
2k||k2

2me

.

Observing the expressions of n±
1 , we find that n±

1 in the
electron-tail region are mainly contributed by their Fourier
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components at k1 = kF , which are denoted as n±
1,kF

. Further, it
is found that

n±
1,kF

∝ eik±
Lxx,

where

k±
Lx = ikD + i

√
k2
|| + k2

D ∓ 2meω

�
, (25)

with kD relates to the DFT work function WD
F by WD

F =
�

2k2
D/2me. Interestingly, the expressions of k±

Lx share the
similar forms as k

(2,4)
Lx with k

(4)
Lx corresponding to k+

Lx, and
k

(2)
Lx corresponding to k−

Lx. In this sense, the longitudinal
modes k

(4,2)
Lx just characterize the induced electron density n±

1 ,
respectively. Furthermore, we notice that k

(2,4)
Lx have exactly

the same form as k±
Lx if λw = 1.

D. Interpretation of ω
Q
c

The above discussions show that the physical solution k
(4)
Lx

is complex valued when ω > ωQ
c , which implies that the

bounded electron being excited to the propagating one by
absorbing the photon energy, i.e., the photoelectric effect.
Based on such understanding, ωQ

c just physically represents
the threshold frequency of the photoelectric effect for different
k||. When k|| = 0, ωQ

c achieves the minimal value, which just
corresponds to the work function. However, unless λw = 1,
the work function defined in this way usually differs with W

Q
F

defined in Eq. (8) as clearly seen from their relation,

W
Q
F =

√
λw�ωQ

c (k|| = 0). (26)

From this perspective, λw → 1 in the electron-tail region can
reconcile the inconsistence of the threshold frequency of the
photoelectric effect and the work function. Thus, the fact
suggests that λw → 1 in the electron-tail region consistent
with the same conclusion in Sec. III B.

VIII. REMARK ON SECS. V–VII

The findings in Secs. V–VII point out several possible
improvements for the QHT. In particular, we show that the
parameter λw should depend on both frequency and space,
and a new term appears in the linear-response equation when
the inhomogeneity of the ground electron density becomes
important in the high-frequency regime ω � γ . Additionally,
the important physical indications of the QHT, such as
capturing the bulk plasmon modes and also the photoelectric
effect, are demonstrated. However, it is still challenging to
build a HT fully consistent with these findings due to our
limited knowledge in the surface region. At this stage, we
refrain explorations in this direction, leaving them for future
work. Instead, we will focus on the details of the simple QHT,
i.e., Eq. (9) with β = √

1/3vF and λw being a constant, by
numerical analysis, and demonstrate both the advantages and
disadvantages of such a theory. It is worth noting that the
general findings in the following sections do not depend on
specific values of β and λw.

IX. BOUNDARY CONDITIONS FOR LINEAR-RESPONSE
DYNAMICS

For solving the LRD, correct boundary conditions (BCs)
are of essential importance. One might speculate that it is
sufficient to assume a simple BC where the excited electron
density n1 is truncated (set to zero) deep into the electron-tail
region. However, care should be taken since n0 would approach
zero as well. First, the knowledge in Sec. VII B tells us that the
simple BC fails to filter out the unphysical mode k

(3)
Lx . Second,

such BC fails to define a unique solution. To illustrate the
second point clearly, we consider a specific case of a metallic
slab driven by a uniform electric field. At each side of the slab,
we know that the simple BC allows four unknown quantities
corresponding to the three longitudinal modes k

(2,3,4)
Lx and also

the induced transverse potential, which are demonstrated in
Sec. VII A. There are in total eight unknown quantities. To
determine these quantities, one can evolve Eq. (18) from
one side of the slab to the other side for an example by
some numerical integration scheme, and glue these unknowns.
Accordingly, one can obtain six equations since Eq. (18) is a
sixth-order differential equation. Six equations are of course
insufficient to determine eight quantities. Thus, the simple BC
allows multiple solutions, which is numerically confirmed in
Appendix B.

To demonstrate the correct BC, we define a new quantity
n′

1 with

n′
1 = n1√

n0
. (27)

As shown in the following, the modifed BC n′
1 → 0 in the

electron-tail region defines the problem well. When ω < ωQ
c ,

it is obvious that the modified BC filters out the unphysical
modes k

(1,3)
Lx automatically. When ω > ωQ

c , at first glance,
it seems that the modified BC becomes invalid, since the
modes k

(3,4)
Lx have the same exponential decaying rate as

√
n0.

However, this could be easily overcome by adding a small
damping γ into the system which makes the mode k

(3)
Lx decay

slower than
√

n0 and the mode k
(4)
Lx decay faster than

√
n0.

Then, the mode k
(3)
Lx is effectively filtered out. So far, we

have proved that the modified BC is physically sound. Next,
following the same mathematical argument as in the above
paragraph, it is easy to show that the modified BC determines
six unknown quantities by six equations, i.e., a problem with
a unique solution.

To conclude this section, the case of the semi-infinite metal
system is discussed. In this case, one also needs the BC in
the bulk region. Below the plasma frequency, the QHT admits
four longitudinal modes among which two modes decay away
from the metal surface, and the other two amplify. Clearly,
the modified BC n′

1 → 0 in the deep bulk region can filter out
the amplifying modes. Above the plasma frequency, there are
two plasmon modes propagating in the opposite directions.
The one propagating away from the surface is the physical
one, which can also be selected by the modified BC with a
finite damping. Thus, the modified BC is also adaptable to the
semi-infinite metal system.
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X. NUMERICAL RESULTS FOR LINEAR-RESPONSE
DYNAMICS

In this section, we will investigate the details of the QHT
for characterizing the LRD by numerical analysis. We again
focus on the system of the semi-infinite metal located in
x < 0. For the QHT, the response is calculated with the FEM
also employed in our numerical analysis of the ground-state
electron density above. For comparisons, we also implement
the time-dependent local-density approximation (TDLDA)
method [78–80]. The numerical computation of the LRD by
the QHT is much more efficient than the TDLDA, because the
heavy computation of the nonlocal response function in the
TDLDA is greatly reduced by the hydrodynamic differential
equation.

A. Distribution of induced charge

We consider the simple metal with rs = 4 driven by a
uniform electric field in the x direction. For the QHT, we
set λw = 0.5 as in Fig. 1(a). The excited electron density n1

at ω = 0.2ωp and 0.8ωp are plotted in Fig. 3(a). Re(n1) is
in phase with the driven field, while Im(n1) is out of phase
with the driving field as a manifestation of the damping. In the
QHT, n1 shows a diffusive profile as the TDLDA, however the
oscillation feature in the bulk region is nearly invisible owing
to the exponential decay as discussed in Sec. V. For the lossless
case (γ = 0) in the QHT, we observed that Im(n1) is zero at
ω = 0.2ωp and becomes nonzero at ω = 0.8ωp. This is due to
the bounded electron being excited into the propagating state
when ω > ωQ

c , with ωQ
c = 0.74ωp in this case. Increasing γ

to 0.025ωp, thereby accounting for the damping channels not
included in the QHT such as the electron-hole excitations,
Im(n1) becomes nonzero at ω = 0.2ωp.

Finally, we consider the simple metal with rs = 2. For the
QHT, we choose λw = 0.25 as in Fig. 1(a). The results are
plotted in Fig. 3(b) which shows the overall similar behavior
as in Fig. 3(a).

B. Centroid of induced charge

To make a more quantitative judgment on the accuracy of
the QHT, we discuss the centroid of the induced charge [81],
which is denoted as dc and defined by

dc(ω) =
∫
dx xn1(ω,x)∫
dx n1(ω,x)

.

Re(dc) can be positive or negative meaning that the induced
charge is effectively located outside or inside the metal,
respectively. Im(dc) captures the strength of surface damping
of the system. Such a parameter has a determinative role
on the dispersion of the surface plasmon (SP) resonance.
For three typical geometries of the metal system, i.e., plane
interface, cylinder, and sphere, we summarize the dispersion
expressions of the SP resonance in Table III [45,50,78,81,82].
Clearly, Re(dc) > 0 leads to a redshift of the SP resonance with
the SP wave number increasing or the size decreasing, while
Re(dc) < 0 consequently leads to a blueshift. Quite intuitively,
Im(dc) is linked to a resonance broadening.

In Fig. 4(a), we plot dc for the simple metal with rs = 4.
The important frequencies ωD,Q

c and ωD,Q
mp are indicated

 

 

rs = 4

×10−1
QHT γ = 0.025ωpQHT γ = 0TDLDA

0.6

0.4

0.2

0

-0.2

x [nm]

rs = 2

R
e(

n
1
)

Im
(n

1
)

1.2

0.8

0.4

0

-0.4

x [nm]
×10−1

Im
(n

1
)

0.4

0.2

0

-0.2

R
e(

n
1
)

0.6

0.4

0.2

0

-0.2

ω = 0.8ωp

ω = 0.8ωp

ω = 0.2ωp

(b)

(a)

ω = 0.2ωp

−1.5 −1 −0.5 0 0.5−1.5 −1 −0.5 0 0.5

−1.5 −1 −0.5 0 0.5−1.5 −1 −0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

−8

−4

0

4

8

−1.2

−0.6

0

0.6

−4

−2

0

2

4

FIG. 3. (Color online) Excited electron density of the semi-
infinite metal structure driven by a uniform electric field in the x

direction for the simple metals with (a) rs = 4 and (b) rs = 2. The
metal is in located in the region x < 0. The results are calculated by
the QHT and TDLDA.

by arrows, and the superscripts “D” and “Q” indicate the
TDLDA and QHT values, respectively. ωc represents the
threshold frequency of the photoelectric effect as introduced
in Sec. VII D. We know that WD

F = �ωD
c for the TDLDA,

and W
Q
F = √

λw�ωQ
c for the QHT. Above ωc, Im(dc) shows a

slight enhancement owing to the excitation of the propagating

TABLE III. SP resonance dispersion for plane interface, cylinder,
and sphere shaped metallic structures. q represents the SP wave
number for the plane interface, l represents the angular momentum
number of the cylindrical or spherical SP harmonics, and r represents
the radius of the cylinder or sphere.

Geometry SP resonance

Plane interface
ωp√

2

(
1 − qdc

2

) + O
(
q2d2

c

)
Cylinder ωp√

2

(
1 − ldc

2r

) + O
( l2d2

c

r2

)
Sphere ωp

√
l

l+1

(
1 − (l+1)dc

2r

) + O
(

l2d2
c

r2

)

115416-11



WEI YAN PHYSICAL REVIEW B 91, 115416 (2015)

Im(dc)

Re(dc)

Im(dc)

Re(dc)

d
c
[n

m
]

ω/ωp

ωQ
C

QHT

ωD
mp

ωQ
mp

ω/ωp

TDLDA

ωD
C

d
c
[n

m
]

(b)

(a)

0.1 0.2 0.3 0. .5

0.2 0.4 0.

4 0

6 0.8

0

0.1

0.2

−0.5

0

0.5

1

1.5
−0.2

0

0.2

0.4

FIG. 4. (Color online) Centroid of the induced charge for the
semi-infinite simple metal structure with rs = 4. The results calcu-
lated by the TDLDA and QHT. For the QHT, we choose λw = 0.5
and γ = 0.025ωp . The arrow markers ωD,Q

c and ωD,Q
mp indicate the

threshold frequency of the photoelectric effect and the multipole SP
resonance frequency, respectively, where the superscripts “D” and
“Q” indicate the TDLDA and QHT values, respectively. The shaded
region covers the frequency range between ωQ

mp and ωD
mp, where the

values of Re(dc) for the TDLDA and QHT show opposite signs.

state. ωmp represents the resonance frequency of dc. Across
ωmp, Re(dc) experiences an abrupt change from the positive to
the negative value, while Im(dc) shows a peak. Such behavior
physically corresponds to the multipole (MP) surface-plasmon
resonance. At resonance, the dipolelike charge distribution is
established in the surface region, and the induced electric field
acts as the restoring force to drive the resonance. To illustrate
this picture clearly, the charge distributions around ωmp for the
TDLDA and QHT are plotted in Fig. 5, where the dipolelike
charge distributions are clearly observed.

Even though the QHT successfully predicts the existence
of ωc and ωmp, it gives the relation,

ωQ
c > ωQ

mp, (28)

contradicting with the TDLDA one ωD
c < ωD

mp. The wrong
relation is a universal property of the QHT independent of β

and λw as proven in Appendix B, and reflects the intrinsic
shortcoming of the theory.

The frequency region between ωQ
mp and ωD

mp is highlighted
(grayscale) in Fig. 4(a). In this region, the QHT gives the
opposite sign of Re(dc) compared with the TDLDA, and
accordingly predicts the wrong trend of the SP dispersion if
the SP frequency is inside this region. For convenience, we

QHT
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FIG. 5. The induced charge for the semi-infinite simple metal
structure with rs = 4 around ωmp. The results are calculated by the
TDLDA at ω = ωD

mp − 0.02ωp and QHT at ω = ωQ
mp − 0.01ωp .

name the frequency region,

ω ∈ (
ωQ

mp, ωL
mp

)
, (29)

as the opposite centroid (OC) frequency region. Away from
the OC frequency region, especially for ω � ωQ

mp, the values
of dc of the QHT and TDLDA have a reasonable agreement as
observed in Fig. 4(b). Here, it is worth noting that the frequency
range in Fig. 4(b) is much larger than the damping frequency
γ . This indicates that the QHT under the LEA approximation
can still be able to predict the LRD qualitatively well in the
high-frequency regime.

Next, we consider the simple metal with rs = 2, and plot dc

in Fig. 6. As in Fig. 4, the QHT gives the wrong relation
between ωQ

c and ωQ
mp confirming the universal relation of

Eq. (28). Additionally, the OC frequency region in this case is
much wider than in Fig. 4.
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FIG. 6. (Color online) Centroid of the induced charge dc for
the semi-infinite simple metal structure with rs = 2. The results
calculated by the TDLDA and QHT. For the QHT, we choose λw =
0.25 and γ = 0.025ωp . The arrow markers ωD,Q

c and ωD,Q
mp indicate

the threshold frequency of the photoelectric effect and the multipole
SP resonance frequency, respectively, where the superscripts “D” and
“Q” indicate the TDLDA and QHT values, respectively. The shaded
region covers the frequency range between ωQ

mp and ωD
mp, where the

values of Re(dc) for the TDLDA and QHT show opposite signs.
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FIG. 7. The OC frequency region (shadow areas) as a function of
λw for the simple metals with rs = 4,2.

C. OC Frequency region

Obviously, it is desirable to have a narrower OC frequency
region for the QHT, i.e., more agreement between ωQ

mp and
ωL

mp. Accordingly, this calls for the optimization of λw. Here,
we calculate the OC frequency region as a function of λw, and
plot the results in Fig. 7. Two observations are worth noting:
(1) the OC frequency range shrinks as λw decreases, indicating
that smaller λw is better than a larger one; (2) the OC frequency
range is much wider for the metal with rs = 2 than with rs = 4
independent of the choice of λw.

To further illustrate how different values of λw and resulted
OC frequency regions affect the LRD, we choose λw =
0.5, 0.15 and γ = 0.025ωp, and calculate the dispersions of
the SP and MP resonances for the simple metal with rs = 4.
The results are illustrated in Fig. 8. The TDLDA results
show that the SP resonance starting from ωp/

√
2 experiences

a redshift initially as the wave number increases, and then
turns to blueshift after the wave number exceeds 0.14kF .
The redshift for the small wave number is also captured
by the QHT with λw = 0.15, but not with λw = 0.5. This
could be understood from Fig. 7 that the frequency ωp/

√
2

is outside the OC frequency region for λw = 0.15, while
it is inside for λw = 0.5. Additionally, for the large wave
number of the SP mode, the QHT and TDLDA show an
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FIG. 8. (Color online) The dispersion of the surface plasmon and
multipole surface plasmon resonances for the simple metal with rs =
4. The results are calculated by the TDLDA and QHT.

increased disagreement. Next, for the MP resonance, the
TDLDA result indicates that the resonance shows blueshift as
the wave number increasing, which again agrees with the QHT
λw = 0.15 qualitatively. The above numerical results suggest
that λw = 0.15 is superior to λw = 0.5 for characterizing
the LRD. However, as demonstrated in Sec. III, we know
that λw = 0.5 is better for the ground state instead. Such
inconsistency manifests the limitation of the QHT, and also
suggests the trade-off of λw for characterizing both the ground
state and the LRD.

XI. CONCLUSIONS AND DISCUSSIONS

In conclusion, we investigate the quantum-hydrodynamic
theory (QHT) for linear-response dynamics (LRD) of metallic
media, offering a thorough comparison of QHT with micro-
scopic quantum theory.

We demonstrate that the QHT can predict the following
important quantities: (1) the work function W

Q
F from the

ground state electron density; (2) the threshold frequency of
the photoelectric effect ωQ

c from the analysis of the LRD in the
electron-tail region; (3) the mulipole resonance ωQ

mp; (4) the
correct trend of frequency shifts of both SP and MP resonances
by choosing a proper parameter λw. Even in light of the above
appealing advantages, the QHT has the following intrinsic
limitations: (1) The threshold frequency of the photoelectric
effect is not consistent with the work function; (2) the incorrect
relation between the multipole surface plasmon resonance and
the threshold frequency of the photoelectric effect.

For numerical solutions of the LRD within the QHT, we
define the nontrivial boundary condition. From the numerical
analysis, we also explore the centroid of induced charge,
identifying an important frequency region where the QHT
fails to predict the correct sign of the centroid of the induced
charge. Such frequency region can be reduced by choosing a
smaller λw.

We also show some possibilities for improving the QHT.
(1) λw parameter. In the bulk region, λw depends on

frequency with λw = 1/9 for ω � γ and λw = 1 for ω � γ .
In the electron-tail region, we suggest λw → 1 to make the
threshold frequency of the photoelectric effect consistent with
the work function.

(2) New and modified terms. By analyzing the LRD in
a weakly inhomogeneous electron gas, it is found that, in
the high-frequency regime where ω � γ , a new term N (3)J1

should be added, and a slight modification to the coefficient
N (0) should be taken into account. In our future work, we aim to
improve the QHT for being consistent with the above findings.
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FIG. 9. (Color online) n1 and n′
1 calculated by the simple and

modified BCs for the semi-infinite metal structure with rs = 4. The
system is driven by a uniform electric field in the x direction at
ω = 0.8ωp , and λw = 0.5 for the QHT.

APPENDIX A: BOUNDARY CONDITION

In this section, we numerically prove the following: The
simple BC that the induced electron density n1 approaches
zero in the electron-tail region is not correct and gives multiple
solutions, while the modified BC that the defined quantity n′

1 =
n1/

√
n0 approaches zero in the electron-tail region determines

the unique physical solution. To illustrate this, we consider the
semi-infinite metal located in x < 0 with rs = 4, and choose
λw = 0.5 for the QHT. The system is driven by a uniform
electric field in the x direction at ω = 0.8ωp. The calculated n1

and n′
1 are plotted in Fig. 9. With the simple BC, two different

solutions are demonstrated. Additionally, the oscillations of
n′

1 in the tail region, due to the interference between the
unphysical mode k

(3)
Lx and the physical mode k

(4)
Lx , are observed.

With the modified BC, we only have one solution. The
unphysical mode k

(3)
Lx is filtered out, which leads to the absence

of the oscillations of n′
1 in the electron-tail region.

APPENDIX B: PROOF OF ω
Q
mp < ω

Q
c

To prove ωQ
mp < ωQ

c , we define the polarization field P1

by ∂P1/∂t = J1, neglect the damping in Eq. (9), and rewrite
Eq. (9) as

∂2P1

∂t2
= ε0ω

2
pf 2

0 E1 + β2f 2
0 ∇

[
N (4)

f 2
0

− N (2)

f0
∇2 1

f0

]
∇ · P1,

(B1)

where

N (4) =f
4/3
0 + C0v

2
F

β2
f

4/3
0 − C1v

2
F

6β2
f

2/3
0 − C3v

2
F

3β2
f 2

0 + N (2)∇2f0

f0
.

We focus on the one-dimensional (1D) case that the metal is
located in x < 0, and all relevant quantities only depend on
x. In the absence of the external charges, the displacement
field D1 = ε0E1 + P1 is constant throughout the 1D space
due to Gauss’s law. At the MP resonance, a dipolelike
charge distribution is established in the surface region, which
indicates that E1 → 0 and P1 → 0 as x → ±∞. Thus, there is
P1 = −ε0E1. These considerations and Eq. (B1) directly lead
to that P1 at the MP resonance should satisfy

1

f 2
0

∂2P1

∂t2
= −ω2

pP1 + β2 ∂

∂x

{[
N (3)

f 2
0

− N (2)

f0

∂2

∂x2

1

f0

]
∂P1

∂x

}
.

(B2)

Then, evaluating
∫
dx [ ∂P∗

1
∂t

× Eq. (B2)] + H.c., we arrive at

I (∞) − I (−∞) = dU

dt
, (B3)

where

I =
[
N (3)

f 2
0

∂P∗
1

∂t

∂P1

∂x
− N (2)

f0

∂P∗
1

∂t

(
∂2

∂x2

1

f0

∂P1

∂x

)

+N (2)

(
∂

∂x

1

f0

∂P∗
1

∂t

)(
∂

∂x

1

f0

∂P1

∂x

)]
+ H.c., (B4a)

U =
∫ ∞

−∞

[
1

β2f 2
0

∣∣∣∣∂P1

∂t

∣∣∣∣
2

+ ω2
P

β2
|P1|2

+N (3)

f 2
0

∣∣∣∣∂P1

∂x

∣∣∣∣
2

+ N (2)

∣∣∣∣ ∂

∂x

(
1

f0

∂P1

∂x

)∣∣∣∣
2
]

dx. (B4b)

Due to the harmonic time dependence of e−iω
Q
mp , we have

dU/dt = 0 and, accordingly,

I (+∞) − I (−∞) = 0. (B5)

Equation (B5) serves as the necessary condition for the
existence of the MP resonance, which leads to ωQ

mp <

Min(ωQ
c ,ωp), as explained in the following. We first focus

on the bulk region with x → −∞. Clearly, if ωQ
mp < ωp,

I (−∞) = 0 since the longitudinal modes all exponentially
decay. If ωQ

mp > ωp, the existence of the bulk plasmon
mode leading to P1 ∝ e−iα1x , where α1 is a positive real
number representing the plasmon mode propagating towards
the −x direction. It is then deduced that I (−∞) ∝ N (3)α1 +
2N (2)α3

1 > 0. Then, considering the electron-tail region with
x → +∞. If ωQ

mp < ωQ
c , we know that the induced electron

density decays faster than
√

n0 according to the knowledge
in Sec. VII A, and simply have I (+∞) = 0. However, if
ωQ

mp > ωQ
c , there is P1 ∝ e−kQx+iα2x , where α2 is the positive

real number due to the mode k
(4)
Lx . This apparently leads

to I (+∞) ∝ −N (2)α2k
2
d − 2N (2)α3

2 < 0. Thus, based on the
above discussions, it is clear that Eq. (B5) can only be satisfied
when

ωQ
mp < Min

(
ωQ

c ,ωP

)
, (B6)

which of course implies that

ωQ
mp < ωQ

c . (B7)
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