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Recent advances in experimental techniques emphasize the usefulness of multiple scanning probe techniques
when analyzing nanoscale samples. Here, we analyze theoretically dual-probe setups with probe separations in
the nanometer range, i.e., in a regime where quantum coherence effects can be observed at low temperatures. In
a dual-probe setup the electrons are injected at one probe and collected at the other. The measured conductance
reflects the local transport properties on the nanoscale, thereby yielding information complementary to that
obtained with a standard one-probe setup (the local density of states). In this work we develop a real-space
Green’s function method to compute the conductance. This requires an extension of the standard calculation
schemes, which typically address a finite sample between the probes. In contrast, the developed method makes
no assumption of the sample size (e.g., an extended graphene sheet). Applying this method, we study the
transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum
interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the
dual-probe setup is a useful tool for characterizing the electronic transport properties of extended defects or
designed nanostructures. In particular, we show that nanoscale perforations, or antidots, in a graphene sheet
display Fano-type resonances with a strong dependence on the edge geometry of the perforation.
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I. INTRODUCTION

A key step towards developing novel applications for
graphene and other two-dimensional materials [1–3] is to
obtain a detailed understanding of their electron transport prop-
erties on the nanoscale [4]. At these length scales structural
details play a crucial role due to the restricted dimensionality.
Thus, studying spatially resolved electron transport becomes
important, especially near defects and boundaries, which
dramatically affect the conductance of a device [5,6].

Scanning tunneling microscopy (STM) [7,8] is an important
noninvasive method for studying the electronic structure of
surfaces. Nanometer-scale STM measurements, yielding both
local density of states (LDOS) and topographic details, are
extensively used both theoretically [9–16] and experimen-
tally [17–22] in the study of graphene. However, the STM
measures only local properties, whereas we often want to
obtain information about the transport properties for electrons
traversing the sample. On the other hand, transport properties
are most commonly measured by using invasive macroscopic
contacts. Such contacts represent only a minor perturbation
in large systems, but can be the main source of scattering in
nanoscale devices. Here we evaluate the conductance between
two STM-like tips, i.e., a situation where nanoscale transport
properties can be extracted with noninvasive probes. The
considered regime is thus between the single-STM setup and
the fixed macroscopic contacts.

The envisaged technique requires independently positioned
point probes to act as input and output. Such setups have been
achieved experimentally [23–28] and the recent progress is
reviewed in detail in Refs. [29,30]. State-of-the-art exper-
imental techniques [24,31] allow for tip separations down
to 50–100 nm. Compared to the conventional single-STM
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setups, which reflect local properties, the multiprobe signal
provides additional information being a transport quantity.
Multiprobe measurements have been used to characterize
several systems: anisotropic transport [32], nanowires [24,33],
carbon nanotubes [34], graphene nanoribbons [31], grain
boundaries both in graphene [35,36] and other materials [37],
and monolayer and bilayer graphene [38–40].

Graphene-based materials are particularly interesting be-
cause the mean-free path in high-quality samples is compa-
rable to or perhaps even longer than the probe separation
[31]. As a result, the dual-STM setup is effectively in the
phase-coherent regime at low temperatures. In this regime,
structural details, such as single-site scattering centers, edges,
or grain boundaries, limit the conductance, such that quantum
interference phenomena become visible in the transmission
between the probes. This gives information about how the
electrons travel through the sample and is not limited to local
properties as is the single-STM measurement.

In a recent work [41], the present authors proposed a
dual-probe setup keeping one fixed probe while the other
probe operates in the scanning mode. We used real-space
conductance maps to explore quantum interference effects
near defects and edges in graphene. Fourier transforms of
the real-space conductance maps allowed us to extract further
details, and in particular they revealed information about
intra- and intervalley scattering due to these defects. In the
present work, we extend the theoretical investigation to the
spectroscopic mode of the dual-probe system, where two fixed
probes operate in the presence of an applied gate, which allows
the Fermi energy to be varied. While we focus on graphene as
an illustrative example, particularly suited for the observation
of quantum interference phenomena, the methodology is
general and applicable to other surfaces or two-dimensional
materials. We use a combination of numerical calculations and
analytic expressions to explain the spectroscopic fingerprints
observed both in pristine graphene and in the presence of
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vacancies and adatoms. Finally, we extend the framework to
nanostructures such as perforations.

The paper is organized as follows: Section II introduces
the real-space Green’s function (GF) method and highlights
the conceptual differences compared to standard recursive GF
techniques. Section III considers dual-probe spectroscopy of
pristine graphene based on both analytical approximations of
the GF and numerical calculations. Section IV introduces de-
fects where both single vacancies and adatoms are considered
in the high-symmetry directions, but also randomly placed
in the sample. Finally, Sec. V considers perforations of the
graphene lattice with different edge geometries.

II. METHOD

A. Transport calculations using point probes

The transport setup consists of a device region and two leads
as illustrated in Fig. 1. We describe the leads by the surface
GF, gS , which couples to the device region that is described
by the retarded/advanced GF G /G †. We view gS as a known
quantity (a simple analytic model is used below, but more
elaborate models are readily incorporated in the formalism),
and solve G /G † from the appropriate Dyson equation; see
below. The main difference between the setup sketched in
Fig. 1 and the standard Landauer setup [42], where left and
right lead couple to the edge of a finite device region, is that
the device region is now infinite. Standard recursive methods,
treating infinite systems, use periodic boundary conditions.
However, imposing periodic boundary conditions for the two-
point probe setup would lead to a spurious repetition of the
probes. As a consequence we require a real-space formalism
ensuring that the probes only appear locally.

B. Real-space graphene Green’s function

The basic building block of our method is the real-space
representation of the GF for an infinite pristine graphene sheet,
G 0. This object is computed using a nearest-neighbor tight-
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FIG. 1. Setup sketch including the leads modeled as one-
dimensional chains with a hopping tc between the sites. The surface
Green’s functions gs are indicated together with the coupling γ 1/2

between the lead and the graphene sample.

binding model, and the GF element connecting sites i and j is
given by

G0
ij (z) = 1

�BZ

∫
d2k

Nij (z)eik·(rj −r i )

z2 − γ 2
cc|f (k)|2 , (1)

where z = E + i0+ is the energy, �BZ is the area of the
first Brillouin zone, and the carbon-carbon hopping integral is
γcc ≈ −2.7 eV [43]. The position of site i is denoted by r i =
mi a1 + ni a2 in units of the lattice vectors a1 and a2 with mi

and ni being integers. We introduced the definition Nij (z) = z,
when i and j are on the same sublattice and Nij (z) = γccf (k)
if i and j are on opposite sublattices (Nji = N∗

ij ). Finally, we
use the definition f (k) = 1 + eik·a1 + eik·a2 .

The two-dimensional integral Eq. (1) can be converted to a
single integration using complex contour techniques [44]. The
remaining integration can be treated using standard numerical
integration. This approach is valid regardless of the separation
between the points i and j ; even long distance terms are
easily obtained with only a minor complications arising in
the convergence of Eq. (1) due to the rapidly oscillating phase.

C. Including defects

To include modifications to the pristine lattice, we use the
Dyson equation:

G = G 0 + G 0V G = (1 − G 0V )−1G 0, (2)

where G 0 is the pristine GF matrix and V is the perturbation.
Any local perturbation (e.g., adatoms, vacancies, coupling
to leads) can be included using this technique. Accurate
parametrizations for many of these perturbations can be
obtained using density functional theory [45,46].

We note that the dimension of the V matrix is determined
by the number of the modified sites. Thus, for N modified sites
one needs to solve a N×N system, and the computational cost
thus follows the number of defect and contact sites, rather than
the sample size which is usual for recursive GF methods.

All perturbations to the pristine lattice are added in real
space using Eqs. (1) and (2), as opposed to describing them
with additional terms in the reciprocal space Hamiltonians.
This ensures that modifications are added locally and not
repeated via periodic boundary conditions. The approach is
well suited to situations where the majority of the sample is
pristine, as unmodified graphene is computationally “free.”

D. Transmission

The transmission coefficient between the two probes, T12,
yields the zero-temperature conductance as G12 = 2e2

h T12 (here
we treat the spin-degenerate case). The transmission is given
by [42,47]

T12(E) = Tr[G (E)�1(E)G †(E)�2(E)], (3)

where E is the energy, G is the full Green’s function Eq. (2)
(including the sites coupling to the leads), and �1/2 is the
coupling to the leads given as �1/2(E) = i(�1/2 − �

†
1/2). The

self-energies �1/2 of the leads are calculated from the coupling
matrix between the lead and the sample γ 1/2 and the surface
GF of the lead gs ; i.e., �1/2 = γ 1/2

†gsγ 1/2. We use a linear
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atomic chain model for the leads where the surface GF is

known exactly [48]: gS = E±
√

E2−4γ 2
l

2γ 2
l

, where γl is the coupling

between the sites in the linear chain (here γl = γcc is used).
The parameters are chosen to ensure a constant DOS in the
leads in the considered energy interval.

The coupling between the graphene and the tip of the probes
is calculated using the Tersoff-Hamann approach [49,50]:

γj = γ0wje
−dj /λ cos(θj ), (4)

where θj and dj are the angle and the distance, respectively,

between the tip apex and site j , and wj = e−ad2
j /

∑
m e−ad2

m ,

λ = 0.85 Å, and a = 0.6 Å
−2

are constants chosen in accor-
dance to Refs. [50,51]. γ0 is a scaling factor, which in practical
calculations is set to γ0 = 10γcc.

When considering a probe coupling to a single site, the
transmission in Eq. (3) reduces to the following simple form:

T12(E) = (2πγ1γ2ρlead)2 |G12(E)|2, (5)

where ρlead = −Im(gs)/π is the constant density of states
of the last atom of lead. Hence the only energy dependence
originates from the GF term.

From Eq. (5) we notice that the transmission scales with
the DOS of the leads. The transmission also scales with the
coupling to the probes as ∼γ 2

1 γ 2
2 . As γ1/2 depend exponentially

on the distance between the tip and the sample, this means
that decreasing the distance between sample and tip by ∼1 Å
increases the coupling which in turn increases the transmission
by a factor of ∼100.

In what follows, we consider STM-like probes (i.e., probes
which couple only to a very limited number of sites in the
sample) in order to obtain transparent results giving insight into
the processes which dominate the transport between the point
probes. More realistic or larger probes may be included within
the presented framework by increasing the number of graphene
lattice sites that couple to the probes or by substituting the
semi-infinite monoatomic chain by other surface GFs.

Finally, it is noted that we consider the low-temperature
and low-bias regime and therefore ignore inelastic effects such
as phonon scattering [52]. Here we also neglect the possible
nonplanarity of the graphene sheet, either due to the intrinsic
ripples [53] or caused by one of the probes [38]. However,
we previously discussed the effect of ripples on dual-probe
scanning mode calculations in Ref. [41].

III. PRISTINE GRAPHENE

We first consider the case of pristine graphene without
defects. In this case we can gain a transparent understanding
by the so-called stationary phase approximation (SPA) [44] to
the GF in Eq. (1). The SPA is valid for the high-symmetry
directions (armchair or zigzag) and for separations between
the i and j sites exceeding a few lattice spacings. Using the
SPA, the graphene GF in Eq. (1) can be expressed as

G
0,ac
ij,SPA = A(E)eiQ(E)dij√

dij

, (6a)

G
0,zz
ij,SPA =

∑
η=±

Aη(E)eiQη(E)dij√
dij

, (6b)

whereA(E) is an energy-dependent amplitude andQ(E) is the
Fermi wave vector in the armchair and zigzag directions. The
coefficients are given in the Appendix and derived in Ref. [44].

Inserting Eq. (6) into Eq. (5) gives the distance dependence
of the transmission, T12 ∝ 1/d12. Consequently the resistance
scales linearly with probe separation, R ∝ d12.

Consider now the case when the separation between the two
probes is in the armchair direction. Using Eq. (6a), we find that
the transmission coefficient increases linearly with energy. The
linear increase of T (ac) ∝ |A|2/d12 originates from the fact
that |A|2 grows linearly with energy for low energies; see the
Appendix.

The zigzag direction is more complicated because of the
two terms in Eq. (6b), caused by the two nonidentical sides of
the Fermi surface along the zigzag direction:

T (zz)
12 × d12 ∝

∣∣∣∣∣
∑
η=±

AηeiQηd12

∣∣∣∣∣
2

= |A+|2 + |A−|2

+ |A+||A−| cos([Q+ − Q−]d12). (7)

In addition to the linear increase (the first two terms), we also
find an oscillating term. The oscillation period decreases with
increasing energy due to the energy dependence of Q+ − Q−.
We therefore expect a more rapid oscillation for higher values
of the Fermi energy.

In Figs. 2(b) and 2(c) we plot the energy-dependent
transmission for dij parallel to either armchair (b) or zigzag (c)
for probe separation ∼50 nm. The transmissions are calculated
using both Eq. (6) (dots) and using a numerical evaluation of
Eq. (1) (line). We note an almost perfect match for all energies,
which confirms the validity of the SPA approach.

In Fig. 2(d) we consider a direction rotated θ ≈ 11◦ relative
to the armchair direction. Consequently the oscillation period
depends on the rotation angle θ , as defined n Fig. 2(a). The
oscillation is a consequence of the asymmetry of the Fermi
surface in the given direction and is therefore a fingerprint of
the crystalline direction between the probes.

The GFs for all other separations (except armchair) have
the same form as Eq. (6b) [44]. So the transmission generally
takes a form equivalent to Eq. (7) but with different expressions
for Q+ and Q−, which depend on the direction of separation.
In the limit of low energies we can expand the coefficients
as |A|2 ∝ E and (Q+ − Q−) ∝ E2/ν(θ ). Here ν(θ ) is an
oscillation period that depends on the angle θ [defined in
Fig. 2(a)]. Accordingly θ = 0 denotes armchair separation and
θ = 30◦ denotes zigzag separation between the probes. The
energy dependence of the transmission in Eq. (7) now becomes

T12 ∝ E cos[E2d12/ν(θ ) + φph], (8)

where φph is a phase factor, which is independent of the
direction but depends on the distance and the exact atoms
coupling to the probes. If we plot T12/E as a function of d12E

2

we can determine the period ν(θ ) as the lowest full period of
oscillation in the T12/E vs d12E

2 plot for the corresponding
angle θ . In Fig. 2(e), we plot ν(θ ) as a function of angle.
Figure 2(e) is the average of many individual calculations of
ν(θ ) for separations ranging from 20 to 100 nm.

From Fig. 2(e) we conclude that ν(θ ) provides a fingerprint
of the probe separation direction. Furthermore ν(θ ) enables
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FIG. 2. (Color online) (a) Sketch showing the pristine sample
and the rotation angle θ from the armchair direction. (b)–(d) The
transmission as a function of energy between the two leads separated
by 50 nm along (b) armchair, (c) zigzag, and (d) rotated θ = 11.1◦

from the armchair direction. In (b) and (c) the transmission calculated
using the SPA is indicated (red dots). (e) The oscillation period ν(θ )
(see main text for definition) is plotted against rotation angle θ as
defined in (a). The curve is constructed by averaging over many
individual calculations with distances ranging from 20 to 100 nm.

us to determine the crystalline direction with a simple
spectroscopic measurement provided we know the distance
between the probes and that the gate is kept sufficiently small.

IV. SIMPLE DEFECTS

Next we consider defects such as vacancies and adatoms.
To obtain an analytical treatment in this case let the defects be
coupled to a group of sites denoted 0 and the probes coupled to
sites denoted 1 and 2. We restate the Dyson equation [Eq. (2)]
using the t-matrix formalism

G12 = G 0
12 + G 0

10t00G 0
02, (9)

where

t00 = (
1 − V 00G 0

00

)−1
V 00. (10)

Inserting this into Eq. (3) we obtain

T12 ∝ Tr[(G12 + G10t00G02)(G †
12 + G †

02t†00G †
10)]

= Tr[G12G †
12 + (G10t00G02)(G10t00G02)†

+ 2Re{(G10t00G02)G †
12}]. (11)

Equation (11) is generally applicable. If the probes and
the defect couple to single sites all matrices reduce to
scalar quantities and enable simple analytic expressions. For
example, we use the SPA expression Eq. (6a) when both probes
and defects are along the armchair direction

�T12 = T12 − T 0
12 ∝ |A|4

d10d20
|t00|2

− |A|3√
d10d20d12

Re{(1 + i)t00e
iQ(d10+d20−d12)}, (12)

where T 0
12 is the pristine transmission, d12 denotes the distance

between the two probes, and d10 and d20 denote the distance
between the defect site and probes 1 and 2, respectively.

Assuming the defect lies between the probes, i.e.,
d12 = d10 + d20, we get from Eq. (12)

�T12 ∝ |A|4
d10d20

|t00|2 − |A|3√
d10d20d12

Re{(1 + i)t00}. (13)

Thus, a change in transmission occurs due to the backscattering
at the defect. This was also observed in Ref. [41] where one
probe scanned around the defect position to obtain a real-space
image of the transmission change. The size and form of �T12

depend on the type of defect through t00.
For the defect on either side of the probes, i.e., d10 = d12 +

d20, Eq. (12) becomes

�T12 ∝ |A|4
d10d20

|t00|2 − |A|3√
d10d20d12

Re{(1 + i)t00e
2iQd20}.

(14)

The result for the impurity on the other side of the probes
(d20 = d12 + d10) is obtained by interchanging 1 and 2.
The case in Eq. (14) gives rise to oscillations as we
change the energy (by changing Q). The oscillations are a
consequence of quantum interference between the outgoing
wave from the output probe and the scattered wave. Similar
expressions as Eqs. (13) and (14) can be derived for the zigzag
separation, but the simple form is complicated by the two
interfering terms in Eq. (6b).

Equations (13) and (14) show that the effect of the impurity
enters through the t matrix, which depends on the type of
impurity. In this section we consider two specific defects:
vacancies and adatoms. Vacancies are modeled as a change of
the on-site energy, V00 → ∞. On the other hand, adatoms are
modeled with an energy-dependent self-energy �α , describing
a resonant level with energy εα , coupled to the graphene
sample with coupling constant γα; i.e., V00 = �α

00 = |γα|2/
(E + i0+ − εα). The t matrices become [54,55]

Vacancy: t00 = V00

1 − V00G
0
00

→ − 1

G0
00

, (15a)

Adatom: t00 = �α
00

1 − �α
00G

0
00

= (
�α

00
−1 − G0

00

)−1

= |tα|2
E − εα − |tα|2G0

00

. (15b)

The adatom gives rise to a resonant level whose position
is determined by both εα and γα . We choose parameters from
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FIG. 3. (Color online) The transmission as a function of energy
for pristine graphene (dashed), vacancy (red), and adatom (blue). The
impurity is in between probes, which are separated by ∼50 nm along
the armchair direction. The dots denote a similar calculation using the
SPA expression Eq. (13). The parameters for the adatom are chosen
as in Ref. [56] as εα = −0.185|t | and tα = 0.37|t |.

Ref. [56] as εα = −0.185|t | and tα = 0.37|t |. This gives a
resonant level within the energy interval of consideration.

Figure 3 shows the numerical result compared to the ana-
lytical expression Eq. (13) for both a vacancy and an adatom.
The impurities are located equidistant (d10 = d20 = d12/2)
from the two probes. Again, we observe an almost perfect
match between the analytic (symbols) and numerical (lines)
results. The vacancy gives rise to an overall reduction in
transmission due to scattering, while the adatom leads to a
smaller reduction of transmission, except at the resonance.
Especially at resonance the level of the adatom interacts
strongly with the continuum of the graphene states giving
rise to the asymmetric Fano-type resonance [57] observed
at approximately −0.15 eV in Fig. 3. Similar results are
obtained for the zigzag direction, but superimposed onto the
characteristic zigzag oscillation discussed in Sec. III.

A. Impurity positions

To investigate the influence of adatom position on the
resonance, we now move the adatom away from the high-
symmetry point between the probes. First, the adatom is moved
along the line connecting the probes such that it is no longer
equidistant from the probes. These positions are shown by
the red and green squares in Fig. 4(a). The corresponding
dual-probe transmissions are shown in Fig. 4(b) and the change
relative to the pristine graphene sheet is shown in Fig. 4(c).
Furthermore, both panels include the transmission for the
equidistant impurity (blue curve) for comparison. Likewise
Figs. 4(d) and 4(e) show the corresponding transmissions as
the adatom is moved perpendicular to the line separating the
probes while keeping the impurity equidistant to the probes.

First, we consider the parallel case. Here the adatom is
either in between the probes, yet closer to one of them
[green square in Fig. 4(a)], or to the far side of one of the
probes [red square in Fig. 4(a)]. The Fano-type resonance is
present for both positions and only the form changes. However,
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FIG. 4. (Color online) (a) Sketch illustrating the two probes
separated along the armchair direction by ∼50 nm. The marks
refers to impurity positions. Blue is along the line of separation
and equidistant of the probes. The green and red squares are moved
relative to the blue site along the armchair direction (parallel) by
12.8 nm and 34 nm, respectively. The transmission for the parallel
translation is shown in (b) and (c). The green and red circles are
equidistant of the probes but moved along the zigzag direction
(perpendicular) to 7.4 nm and 17.2 nm, respectively. The transmission
function for impurities in these positions is shown in (d) and (e). The
zero point for the curves has been translated for better distinction
between curves.

when the impurity does not lie between the probes (red
square), additional oscillations arise. This can be understood
by comparing Eqs. (13) and (14) where the difference is
the term exp(2iQd20). This term gives rise to oscillations
through the energy dependence of Q. The oscillations have
the same origin as these investigated in real space in Ref. [41]
while scanning one probe around the impurity. We notice
the same effect for vacancy positions everywhere outside the
high-symmetry positions.

The same type of oscillations are present for the perpendic-
ular direction. In this case we have to consider the interference
between the emitted wave and the scattered wave returning
from the impurity in the direction of the second probe.

B. Configurational average

In an experimental setup, however, individual defects or
adatoms can be difficult to locate. This makes investigations
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FIG. 5. (Color online) (a) Configuration-averaged transmission
as a function of energy. (b) The difference between the averaged
transmission and the pristine transmission. We place impurities in a
50×85 nm square around the probes The unequal sides are chosen to
take into account the probe separation direction. The curves are made
from averaging 2×104 configurations.

of many randomly scattered defects important. We fix the
two probes with an armchair separation of 50 nm and place
adatoms randomly with varying concentration. The averaged
transmissions are shown in Fig. 5. The transmission is almost
unchanged at energies away from the resonance, despite the
oscillations caused by individual impurity positions shown in
Fig. 4. This shows that the oscillations, induced by interference
between incoming and scattered waves, tend to average out
for many defects. However, the resonance feature survives
configurational averaging as is evident from Fig. 5. The signal
is enhanced on resonance and an overall Fano-type resonance
is present in Fig. 5(b) with a height that scales with impurity
concentration. This suggests that the dual-probe setup can
detect the type (position of resonant level) and concentration
(peak height) of adatoms on the surface of a graphene sample
without the need of scanning the exact position of the impurity
as required for a single-probe measurement. This is in line with
the suggested applications of graphene as a gas sensor [58,59].
In the case of random vacancies we see an overall decrease in
the transmission following the impurity concentration. In this
case a zero-energy peak is present due to localization effects
around vacancies. This feature has been described in several
works addressing the LDOS [5,11,15].

V. PERFORATED GRAPHENE

Many applications require deliberate nanostructuring of
the graphene in order to engineer its electronic structure.
Therefore tools to investigate the transport properties of
individual nanostructures are important in order to confirm
the fabricated structure and its influence on nanoscale electron
transport.

In this section we consider perforations in the pristine
graphene sheet—the so-called antidots (see Fig. 6) [60].

Zigzag Armchair

min max
Density of States

Circular

FIG. 6. (Color online) The density of states for E = 0.028|t |
around antidots with different edge structures as indicated. The maps
are individually scaled.

Several studies [61–63] show that arrays of antidots can induce
a band gap in graphene. The effect of antidots on the electronic
properties of graphene strongly depends on the exact edge
geometry of the antidots. Therefore it is important to study
the formation of single antidots and determine their edge
configuration.

The perforations are modeled by removing the hopping
matrix elements between sites around the edge of the hole,
effectively disconnecting the sites from the rest of the graphene
lattice.

We consider three possible edge geometries for antidots:
zigzag, armchair, or circular; the last contains an alternating
sequence of armchair and zigzag edges (Fig. 6). We calculate
the transmission for each antidot type placed between probes
separated in the armchair direction. The result is shown in
Fig. 7(a). As expected the transmission is generally lowered by
introduction of the perforation. A notable difference between
the antidot types is a transmission dip present for the circular,
and particularly zigzag, type antidots. This dip resembles the
Fano-type resonance observed for single adatoms in Fig. 3.
Figure 7(a) suggests that the resonant feature is connected to
the zigzag edges, as the circular antidot consists of a mixture
of zigzag and armchair edges. We therefore map the local
density of states on sites around the antidot at the energy of the
transmission dip (cf. Fig. 6). The DOS is localized around
the zigzag edges as discussed in Ref. [63]. The localized
zigzag edge states, being essentially dispersionless, resemble
a single level and therefore create a Fano-type resonance
in the transmission for antidots possessing zigzag edges. In
addition, we notice the difference between the resonance of
the circular and zigzag antidot on Fig. 7(a). The resonance
of the pure zigzag edge has a sharper feature than the mixed
edge (circular antidot). This leads to the conclusion that the
resonance features can be related to the amount of zigzag
edge present. Calculations performed with antidots of varying
size (not shown) yield qualitatively the same result, but the
position of the dip feature changes depending on the length
of the zigzag edge present. This in turn can be used as a
fingerprint to determine the edge profile of antidots and other
nanostructures.

In Fig. 7(b) the robustness of the signal against edge
disorder is investigated. We add an on-site potential, chosen
randomly within [−W,W ], to the two rows of atoms around
the antidot. Figure 7(b) shows the transmission for different
disorder strengths averaged over several configurations. For
weak edge disorder the resonance feature persists whereas it
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FIG. 7. (Color online) (a) The transmission for probes separated
along the armchair direction (∼50 nm) for zigzag, armchair, and
circular antidots, respectively. The antidot structures are shown in
Fig. 6. (b) Transmission for the same zigzag antidot as (a) including
disorder of varying strength. Each curve is an average of 50 different
configurations and has been shifted relative to the others. (c) The
transmission for the same zigzag antidot as (a), with probe separations
(∼50 nm) along armchair and zigzag directions, respectively. (d)
Single-probe spectroscopy of zigzag antidot with the same probe
position as (a). Calculation both with and without disorder is included.
The curves have been shifted relative to each other.

vanishes for higher disorder strengths as expected because
high disorder tends to destroy the localized edge state giving
rise to the resonance in the first place.

Next we consider the separation direction between the
probes. The exact direction between the probes should not have
a great impact on the spectroscopic fingerprints, if the dual-
probe setup is to be a useful tool for characterization of larger
nanostructures, such as antidots. Therefore we compare the
transmission for both zigzag and armchair probe separations
in Fig. 7(c) and note very similar behavior at low energies.
We considered several nonsymmetric positions (not shown)
all exhibiting the resonant feature in the same position. This
shows that the resonant feature is robust against fluctuations
in the probe position and therefore that the two-probe setup
indeed can be a useful characterization tool for the electrical
properties of individual nanstructures.

Finally we compare the single and dual probe spectroscopy
of the zigzag antidot. Figure 7(d) shows the single-probe
spectroscopy both without disorder and including a weak
disorder. The single-probe position is the same as one of
the probes in Fig. 7(a). We notice small oscillations due
to the symmetry breaking caused by the presence of the
antidot. This is the same kind of Friedel oscillation arising
around single vacancies [15]. Without disorder the localized
state is barely visible in Fig. 7(d), but the small resonance
vanishes at a disorder strength where it is clearly visible
in the dual-probe spectroscopy [cf. Fig. 7(b)]. Consequently
the transmission signal from the dual-probe setup yields

considerably more information about defect-induced transport
processes compared to the single-probe measurement.

VI. CONCLUSION

A dual-probe setup with probe separation distances in the
nanometer range makes it possible to obtain local transport
properties on the nanoscale. We have presented a theoretical
treatment of such a setup based on a real-space Green’s
function method. This allows calculation of the transmission
between two point probes on an infinite graphene sheet,
without requiring periodicity of either probe or sample, while
keeping the computational size proportional to the number of
modified sites, as opposed to proportional to the total system
size.

Directional transport effects, not directly attainable using
macroscopic contacts, are explored together with the spectro-
scopic fingerprints of local perturbations such as vacancies
and adatoms. Additionally we show the capability of the
dual-probe system to characterize nanostructures. In particular,
we observe Fano-type resonances arising from resonant states
in adatoms or near edges with a zigzag geometry. The
resonance is shown to be a dominant feature in the dual-probe
spectroscopy compared to the single probe.

The demonstrated features of the dual-probe setup, such as
conductance mapping [41] and spectroscopic analysis, suggest
that it has a high potential for applications in the exploration
of transport properties on the nanometer scale.
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APPENDIX: COEFFICIENTS FOR THE SPA

Below are given the coefficients for the SPA expressions
Eq. (6) as derived in [44]:

Q(E) = ± cos−1

(
−

√
1 − E2

t2

)
, (A1a)

A(E) = −1 + i√
π

√
E√

(E2 + 3t2)
√

t2 − E2

, (A1b)

Q+(E) = ± cos−1

(−t − E

2t

)
, (A1c)

Q−(E) = ± cos−1

(−t + E

2t

)
, (A1d)

A+(E) = −1 + 1i√
4π

√
E

|t |(t + E)

1

[(3t + E)(t − E)]1/4
,

(A1e)

A−(E) = −1 + 1i√
4π

√
E

|t |(t − E)

1

[(3t − E)(t + E)]1/4
.

(A1f)
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