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Theory of excitonic second-harmonic generation in monolayer MoS2
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Recent experimental results have demonstrated the ability of monolayer MoS2 to efficiently generate second
harmonic fields with susceptibilities between 0.1 and 100 nm/V. However, few theoretical calculations exist with
which to interpret these findings. In particular, it is of interest to theoretically estimate the modulus of the second
harmonic response since experimental reports on this differ by almost three orders of magnitude. Here, we present
calculations of the second harmonic response based on a tight-binding band structure and implementation of
excitons in a Bethe-Salpeter framework. We compare directly with recent experimental findings demonstrating a
good agreement with the excitonic theory regarding, e.g., peak position. Furthermore, we predict an off-resonance
susceptibility on the order of 0.1 nm/V, while on-resonance values rise to 4 nm/V.
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I. INTRODUCTION

The prediction and observation of a direct band gap in
monolayer (ML) MoS2 has revitalized the interest in the optical
properties of this material [1–13]. Indeed, the fact that MoS2 is
comprised of weakly van der Waals bound layers allows fab-
rication of samples with atomically well-defined thicknesses
by mechanical exfoliation [14]. Following this discovery, a
surge of interest in the physical properties of this new two-
dimensional material has ensued, revealing promising techno-
logical applications in, e.g., field effect transistors [15]. Also,
systematic studies of the layer-dependent optical properties
of few-layered (FL) MoS2 have been carried out, revealing a
remarkable thickness sensitivity in photoluminescence experi-
ments [2,9]. This trend can be attributed to the changing nature
of the band gap (going from indirect in the FL and bulk material
to direct in ML samples) theoretically predicted already in the
work of Mattheiss [16], and more recently, verified using ab
initio density functional theory (DFT) and quasiparticle GW
methods [1,12,17–21]. Monolayer MoS2 is generally reported
to display quasiparticle gaps [1,12,21] of ∼2.8 eV, almost 1 eV
larger than the corresponding DFT results [1,12,18–21]. Also,
optical absorption spectra are very poorly described in the
one-electron picture, requiring the inclusion of electron-hole
attraction to accurately model photoexcitations, affirming the
increased importance of the electron-electron interaction in
such two-dimensional systems [1,12,22].

Performing these calculations ab initio is typically ex-
tremely expensive in terms of the computational resources
often resulting in optical spectra based on modest reciprocal
space sampling with poor resolution of delicate spectral
features, such as discrete excitons or van Hove resonances.
Indeed, Qiu et al. [12] have recently demonstrated how a
convincing agreement between experimental and theoretical
absorption spectra can be achieved in the Bethe-Salpeter
exciton picture only upon the inclusion of several thousand k

points and tens of bands. For other materials, the computational
complexity has been reduced by introducing semi-empirical
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models based on, for example, the effective-mass Wannier ap-
proximation [23]. Another approach is based on models where
quasiparticle energies are approximated by, e.g., tight-binding
band structures fitted to GW results and where electron-hole
attraction is included using an empirical interaction potential,
such as the much-used Ohno form [24–27]. This method
has proven very successful for both organic [24,25] and
inorganic [26] systems. In addition to being of substantial
computational advantage, such methods also offer a distilled
version of the physics involved, highlighting the essential
mechanisms of optical processes. However, no minimal
atomistic exciton model currently exists for ML MoS2, making
numerical approaches to, e.g., nonlinear optical properties,
difficult. Given the recent interest [4–8] in the nonlinear, and
in particular second harmonic (SH), properties of FL MoS2

the development of such models appears particularly pressing.
Several authors [4–6,28] have recently demonstrated how

second-harmonic-generation microscopy can be used to ex-
tract important information regarding, e.g., the number of
layers and crystallographic orientation of few-layered MoS2

platelets. Furthermore, exfoliated MoS2 was shown experi-
mentally to display a remarkably large SH signal, with SH
susceptibilities on the order of ∼100 nm/V reported by the
authors of Ref. [4] while the authors of Refs. [5,6] reported
only ∼0.1 nm/V (assuming a homogeneous susceptibility
inside the monolayer of thickness ∼3 Å when relating to
sheet SH susceptibilities). The regions covered with an odd
number of 2H stacked layers were found to generate SH fields
with efficiencies decreasing slightly with the number of layers,
while regions with an even number of layers displayed almost
vanishing SH signals as expected due to centrosymmetry
[4–6]. However, few-layered MoS2 grown by chemical vapor
deposition (CVD) does not follow this trend [4], possibly due
to the stacking order of CVD-grown films deviating from 2H .
In Ref. [5], SH spectra of both ML and trilayer (TL) MoS2

were presented, demonstrating an intense peak in the SH
spectrum at pump photon energies near 1.45 eV, with a slight
redshift for TLs compared to MLs. Moreover, very recently
the excitation of valley-coherent excitons was demonstrated
using two-photon processes, such as SH generation, in the
closely related system of ML WSe2 [29]. This effect could
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also be of importance in the nonlinear optical properties of
ML MoS2, perhaps opening avenues for exploring the rich
valley physics [30] of this material using SH spectroscopy.
There exists little theoretical work with which to interpret the
experimental findings mentioned above. To our knowledge, the
quasiparticle/exciton results by Grüning and Attaccalite [8]1

remains the only theoretical paper on SH generation in MoS2.
There it was demonstrated how electron-hole attraction signif-
icantly increases the magnitude of the second-harmonic signal
relative to the one-electron result of the same paper, although
few changes to the overall spectral shape of the response
function were reported (in contrast to ML hexagonal boron-
nitride). Several issues regarding the excitonic SH response
in monolayer MoS2 remain, however. In Ref. [8], spin-orbit
coupling (SOC) was neglected, which in linear optics generates
a very distinct splitting of the fundamental exciton peak on the
100-meV scale [2]. Hence, while the corresponding features
in the SH spectrum might be expected to split in a similar
manner, the more complicated resonance structure of the SH
spectrum makes it difficult to predict the effects of SOC on
the SH spectrum, without performing the full calculation, for
anything but the case of SH energies near the absorption edge.
Also, in their work, Grüning and Attaccalite applied a model
avoiding the direct diagonalization of the Bethe-Salpeter
equation implicit in other models of SH generation, such
as the work by Leitsmann et al. [31], relying instead on a
time-integration scheme. While this approach undoubtedly
has many benefits, the Bethe-Salpeter approach remains
the most universally applied method for the calculation of
optical excitations in crystalline semiconductors and simplifies
formally to the historically important single-particle results
generated using, e.g., the formalism of Moss and Sipe [32,33]
in the limit of infinite electron-hole screening [31]. However,
at present, it is very computationally demanding to retain the
k-space resolution needed to resolve delicate spectral features
in a full exciton calculation — a problem which is even
more pronounced in the calculation of nonlinear response
functions since these tend to converge rather slowly. This
is also evident in Ref. [8], where the relatively coarse k

grid (21 × 21 × 1 points) imposes substantial broadening on
the resulting spectrum, making it difficult to resolve, e.g.,
the bound exciton states below the band gap (i.e., the SH
counterpart to the A and B features of linear optics) and the
underlying structure of the observed broadened features.

In the present work, we consider the microscopic origins
of the SH response of ML MoS2, including both SOC and
excitonic effects in the Bethe-Salpeter picture [31], with a
k-point resolution an order of magnitude better than for any SH
exciton calculation previously published [8,31]. This clearly
elucidates the spectral resonance structure of the SH spectrum
imposed by bound electron-hole pairs. To accomplish this,
we apply a model based on several components new to both
MoS2 research and excitonic SH response calculations in
general. First, we apply a semi-empirical approach based on a
tight-binding sp3d5 band structure recently published [34],

1A preliminary version of the present paper, containing only the
one-electron results, was cited in Ref. [8].

and an Ohno-like electron-electron interaction potential to
setup the Bethe-Salpeter equation (BSE). Second, we block-
diagonalize the BSE in both spin and out-of-plane parity
of the tight-binding basis allowing a major reduction in the
complexity of the problem. Third, we present a novel approach
to the evaluation of the SH response, based on the BSE and
the formalism found in Ref. [31], using a Lanczos method to
avoid direct diagonalization of the exciton matrix. We note
that our method is not restricted to MoS2, and can readily
be generalized for ab initio methods. Applying this model,
we verify that the experimental measurements in Refs. [5,6]
agree to within an order of magnitude with our model, and
proceed to analyze the resonance structure of the SH spectrum.
We find clear evidence of the A, B, and C features known from
linear optics [1,2,12] also as resonances in the SH spectrum.
Hence, a rich resonance structure, depending strongly on
electron-hole interaction, is found for the SH spectrum of
MoS2. These findings can only be confirmed experimentally
by renewed efforts in the measurement of SH spectra in a larger
frequency range than has been published so far [5].

The remainder of this text is organized as follows. In
the following section, the theoretical model is considered.
Here, the approach to the electronic structure is first reviewed
explaining the simplifications introduced in the one-electron
tight-binding model followed by extension to the exciton
picture by including electron-hole attraction. Following this,
the model for calculating the linear and SH response is
presented with a focus on the Lanczos implementation of SH
response calculations. Finally, the results are presented and a
conclusion is given.

II. THEORY AND METHODS

A. Electron states

It is well known that the valence and conduction band
extrema of ML MoS2 are located at the K points of the
Brillouin zone and are dominated by d orbitals localized on
the Mo atoms [35]. These bands are particularly important
for optical transitions in the visible range, and are well
represented by the tight-binding band structure found in
Ref. [34]. However, a significant SOC due to the heavy Mo
atoms causes a ∼100 meV splitting of the two highest valence
bands near the K and K ′ points. To properly account for
this we include SOC between the d orbitals localized on
the same Mo atom [36], instead of the p orbitals used in
the original parametrization [34]. We fit the SOC parameter
λd,Mo = 64 meV to the 112-meV splitting of the two highest
valence bands at K reported in Ref. [1].

Furthermore, it is found that SOC matrix elements off-
diagonal in the spin index influence the final band structure
very little, and hence we neglect these making the tight-binding
block diagonal in spin. Moreover, we note that ML MoS2 is
spatially symmetric with respect to the reflection operation
(z → −z), taking all Mo in the plane z = 0. This is reflected
by the atomic Mo orbitals, where the orbitals symmetric
in z {s,px,py,dz2 ,dxy,dx2−y2} couple to the antisymmetric
group {pz,dxz,dyz} only in the off-diagonal SOC part of the
Hamiltonian. The same can be stated for symmetric and
antisymmetric combinations of orbitals centered on the S
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FIG. 1. (Color online) Band structure of ML MoS2. Dashed/full
lines indicate spin, whereas colors are used to indicate the parity of
the bands with respect to the reflection through the MoS2 sheet (see
text for further discussion).

atoms, hence the mentioned neglect of off-diagonal SOC also
allows for an electronic structure with bands of well-defined
z parity. This is a tremendous computational advantage when
considering the exciton problem, as will be discussed shortly.

The band gap of 1.8 eV generated using this method is
comparable to the DFT band gap [1,34] of 1.7–1.8 eV and the
experimentally recorded optical absorption edge [2,5,6,37] of
1.9 eV. However, it should be noted that the agreement between
the DFT band gap and the experimental absorption peak arises
from the approximate cancellation of the notorious DFT gap
underestimation, corrected partially in the GW approximation,
and the exciton binding energy [1,12,21]. Thus, we stress
that even though similar results for, e.g., absorption edges
can be obtained in the one-electron and exciton pictures, very
different physics is, in fact, involved. Hence, to incorporate the
correct quasiparticle gap necessary in an exciton calculation,
we apply a simple scissor correction. The band structure of
ML MoS2 is displayed in Fig. 1 with no scissor shift. Only
very little change relative to the original band structure [34]
can be discerned even though our simplifications have allowed
the separation of bands of even/odd z parity (blue/green lines)
and up/down spin (full/dashed lines).

To include electron-hole attraction, exciton states are ex-
panded in a basis of singly excited Slater determinants [24–26]
|(v�k) → (c�k)〉, where a single valence band state v is excited to
the conduction band c of the same k -vector. This approach is
equivalent to a first-order configuration-interaction approach,
and hence does not include multiply excited states such as the
biexcitons [22] recently reported in MoS2. Hence, the nth exci-
ton wave function |n〉, with excitation energy En, is written as

|n〉 =
∑
c,v,�k

A
(n)
cv�k|(v�k) → (c�k)〉. (1)

Here A
(n)
cv�k are expansion coefficients to be determined. We

note that applying a basis of electron-hole configurations,

such as Eq. (1), is equivalent to applying the Tamm-Dancoff
approximation (i.e., ignoring coupling between the resonant
and antiresonant parts of the BSE) [38]. Including
electron-hole attraction in an empirical tight-binding
basis requires several approximations relative to the more
sophisticated picture of full DFT + GW. Importantly, only
tight-binding envelopes of the one-electron states are known,
preventing direct evaluation of the Coulomb interaction matrix
elements essential to an exciton calculation. Hence, these
matrix elements are typically parametrized as simple functions
of electron-hole separation distance (e.g., the Ohno-potential
widely used for both organic [25] and inorganic [26] systems).
We apply an effective Coulomb interaction on the Ohno
form VC(�r,�r ′) = −e2/[4πεε0

√
|�r − �r ′|2 + a2], where a is

an empirical parameter smearing the Coulomb singularity.
Actually, this type of softened Coulomb interaction represents
an effective way of including the layer thickness in
quasi-two-dimensional systems [39–41], and a is hence taken
to be on the order of the interlayer distance in MoS2. A similar
form also arises in models of two-dimensional gapped Dirac
materials [42]. Furthermore, an effective screening parameter
ε has been introduced. Using this two-particle interaction
operator, the matrix problem yielding exciton energies En and
expansion coefficients A

(n)
cv�k is constructed in the basis of Eq. (1)

Ecv�kA
(n)
cv�k +

∑
c′,v′

∫
Wcv�k,c′v′ �k′A

(n)
c′v′ �k′ d2k′ = EnA

(n)
cv�k. (2)

Here, Ecv�k represent quasiparticle energy differences between
bands c and v at �k in momentum space. In the derivation of
the above expression, we have neglected the exchange term.
Furthermore, Coulomb matrix elements

Wcv�k,c′ �v′ �k′ = 〈(v�k) → (c�k)|VC|(v′ �k′) → (c′ �k′)〉

=
∫∫

ϕ∗
c�k(�r)ϕv�k(�r ′)VC(�r,�r ′)ϕc′ �k′(�r)ϕ∗

v′ �k′(�r ′)d3rd3r ′

(3)

are evaluated by writing tight-binding states ϕα�k(�r) as products
of their rapidly varying lattice-periodic Bloch parts uα�k(�r)
and slowly varying tight-binding envelopes exp(i�k · �r). The
integral is then approximated by the unit-cell-averaged Bloch
part products (contributing simply overlaps between Bloch
functions) multiplied by the convolutions of the envelopes
with the Coulomb interaction kernel over the entire domain of
integration (contributing the Fourier transform of VC) to yield

Wcv�k,c′v′ �k′ ≈ −
e2Iv′ �k′,v�kI

∗
c′ �k′,c�k

8π2εε0|�k − �k′|e
−a|�k−�k′|. (4)

The dominant contributions to the Bloch overlaps Iα�k,β �q
can be written in terms of elements from the k-dependent

tight-binding overlap matrix
↔
S (�k) and the tight-binding

eigenvectors �Cα�k

Iα�k,β �q = 1

�0

∫
u∗

α�k(�r)uβ �q(�r) d3r

≈ 1

2

∑
i,j

C
(i)∗
α�k C

(j )
β �q [Sij (�k) + Sij (�q)]. (5)
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Here, i and j are used to indicate the atomic basis, i.e., the entry
of the one-electron eigenvector, and �0 is the unit-cell area.
With this, Eq. (2) is discretized on a uniform grid restricted
to the Brillouin zone, and the matching two-particle exciton

matrix
↔
H can be constructed. Exciton energies and states may

then be obtained from direct diagonalization. However, this
strategy becomes impractical even for modest k grids since
↔
H contains N2

exc = (Nc × Nv × Nk)2 elements, Nc,Nv , and
Nk indicating the number of conduction bands, valence bands,
and k points, respectively. One simplification is to include only
a restricted set of bands near the Fermi level in the one-electron
basis. Additionally, since the quasiparticle states applied for
the exciton calculation have a well-defined parity in z, the BSE
may be diagonalized into blocks of even and odd symmetry.
The same is true for spin, hence, only four diagonal blocks of
the BSE contribute bright excitons, noting we consider the in-
plane response. Moreover, in the optical response calculations
to be discussed shortly we forego direct diagonalization
completely and apply instead a Lanczos scheme [43].

B. Linear optical response

We calculate the real part of the diagonal, linear optical
sheet conductivity tensor from the exciton states using the
well-known expression [25]

σ ′
xx(ω) = e2π

m2
e�ω�

∑
n

|Pn|2δ(ω − ωn)

= e2

m2
eω�

Im〈P |G(w)|P 〉, (6)

where ωn = En/� and Pn = 〈0|P̂x |n〉 indicate the transition
frequency and the (in-plane) x component of the momentum
matrix element coupling the nth exciton state with the ground
state, while the crystal area is denoted �. Furthermore,
w = ω + i� is the complex frequency containing the optical
frequency ω and a small phenomenological broadening �,
which should, strictly speaking, be taken to vanish for the
second equality of Eq. (6) to hold. In practice, the sum
over exciton states in the first line of Eq. (6) is rewritten
in terms of matrix elements of the exciton Green’s function
G(w) = ∑

n |n〉〈n|/[�w − En]. Here, the state |P 〉 = P̂x |0〉 =∑
c,v,�k px

cv|(v�k) → (c�k)〉 is constructed from the x component
of the all-electron momentum operator P̂ acting on the ground
state, while px

cv represents the x component of the one-electron
momentum matrix elements between valence band v and con-
duction band c. This formulation has the advantage of allowing
use of the Lanczos method for the evaluation of the resolvent
matrix elements 〈P |G(w)|P 〉 without having to directly

diagonalize the BSE. In this approach, the Hamiltonian
↔
H is

tridiagonalized into
↔
T by the similarity transformation

↔
T =

↔
Q

†

· ↔
H ·

↔
Q. The transformation matrix

↔
Q= [�q0 �q1, . . . , �qNexc−1]

can be constructed by recursive generation of the Lanczos

vectors �qi and elements of
↔
T based on some initial seed vector

�q0. Additionally, since each recursion step only depends on the
Lanczos vector of the previous step, this process may be halted
at any point j < Nexc − 1. The resolvent matrix elements may

then be approximated in this restricted basis of typically a few
hundred elements upon applying |P 〉 as the initial Lanczos
vector. A full review of this method may be found in Ref. [43].

In the one-electron limit (i.e., the limit ε → ∞), the exciton
matrix Eq. (2) becomes diagonal, and the above expression
reduces to purely one-electron contributions. In the limit of
vanishing broadening, the real part of the response reduces to
the one-electron result [44]

σ ′
xx(ω) = e2

2πm2
e�ω

∑
c,v

∫ ∣∣px
cv

∣∣2
δ(ω − ωcv) d2k, (7)

where ωcv denotes the transition frequency between states in
bands c and v (with an implicit k dependence). One-electron
momentum matrix elements are calculated as in Ref. [45]. In
the one-electron limit, spectra fully converged with respect
to k-point sampling can be generated using the improved
linear-analytic triangle method [44]. This provides a basis
for confirming the correct limiting behavior of the exciton
spectrum for ε → ∞.

C. Second harmonic optical response

The imaginary part of the sheet SH susceptibility tensor,
at fundamental pump frequency ω, can be calculated from a
set of exciton states using an expression identical to the one
derived by Leitsmann et al. [31]

χ
(2)
abc(ω) = − ie3

ε0�
2m3

e�

∑
m,n

1

ωnωnmωm

{
P0nm

[ωn − 2w][ωm − w]

− Pmn0

[ωn − w][ωm + w]
+ Pm0n

[ωn + w][ωm + 2w]

}
.

(8)

Here, Pijk = P a
ij [P b

jkP
c
ki + P c

jkP
b
ki]/2 where P a

ij is the Carte-
sian a component of the momentum matrix element between
exciton states i and j (while 0 indicates the ground state).
Furthermore, ωnm = ωn − ωm. Due to symmetry, the only non-
vanishing SH tensor elements are χ (2)

xxx = −χ (2)
xyy = −χ (2)

yyx =
−χ (2)

yxy ≡ χ (2), with the x axis aligned along an armchair
direction. Malard et al. [5] and Kumar et al. [4] defined this
direction differently relative to the indices of the contributing
tensor elements. However, we follow the conventions of the
authors of Ref. [5] and confirm these to be correct by numerical
testing (which is also clear from symmetry since the armchair
direction spans a mirror plane together with the z axis). We
again avoid direct diagonalization of the exciton problem
by applying a Lanczos-based method as follows. First, we
consider the first term of Eq. (8) (which is the dominant
contribution to the SH spectrum) upon rewriting it slightly
and denoting it χ

(2)
A

χ
(2)
A (ω) = e3

ε0�
2m2

e�

∑
m,n

〈P | |n〉〈n|
[ωn − 2w]ωn

X̂
|m〉〈m|

ωm[ωm − w]
|P 〉

= e3

2ε0m2
e�ω2

〈P |[G(2w) − G(0)]

× X̂[G(w) −G(0)]|P 〉. (9)
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Here, 〈m|X̂|n〉 = 〈m|P̂x |n〉/[iωmnme] is the x component of
the position operator. Second, we again apply a Lanczos
tridiagonalization of the exciton matrix, which gives access to a
set of orthonormal Lanczos states [43] spanning the eigenspace
of the exciton Hamiltonian |qi〉,i = [0, . . . ,Nexc − 1], where
|q0〉 = |P 〉. Now, applying the approximate completeness of
the Lanczos states, we write

χ
(2)
A (ω) = e3

2ε0m2
e�ω2

∑
n,m

[G0n(2w) − G0n(0)]Xnm

× [Gm0(w) − Gm0(0)]. (10)

Here, G0n(w) = 〈q0|G(w)|qn〉 is the off-diagonal resolvent
matrix element in the Lanczos basis while Xnm = 〈qn|X̂|qm〉
is the x component of the position matrix element, also in the
Lanczos basis. By calculating the resolvent matrix elements in
a truncated basis using an efficient tridiagonalization routine,
the SH response may be calculated much more efficiently than
in the case of direct diagonalization. Including all three terms
of Eq. (8) yields upon rewriting to Green’s functions in a
similar manner

χ (2)(ω) = e3

2ε0m2
e�ω2

∑
n,m

{F0n(2w)XnmFm0(w)

+ 2[F0n(−w)XnmFm0(w)

−F0n(−w)XnmFm0(−w)]}, (11)

where Fnm(w) = Gnm(w) − Gnm(0).
In the one-electron limit and a complete basis, the purely

interband part of the SH response reduces to [31–33]

χ
(2)′′
abc (ω) = e3

2πm3
e�

2ε0ω3

∑
c,v,l

∫ [
Pvcl

ω − ωlv

δ(2ω − ωcv)

+
(

Pvlc

ω + ωcl

+ Pclv

ω + ωlv

)
δ(ω − ωcv)

]
d2k. (12)

Here, Pijl = Im{pa
ij (pb

jlp
c
li + pc

jlp
b
li)}/2 and the band index

l runs over all bands with the restriction l = (c,v). The first
term of the one-electron SH susceptibility Eq. (12) contributes
when an electronic excitation frequency ωcv resonant with the
SH photon frequency 2ω can be found. This term is referred
to as the 2ω term, and whenever the aforementioned criterion
is satisfied while ω ≈ ωlv a particularly powerful, so-called
double resonance is found. Similar comments can be made
regarding the ω terms that contribute whenever the condition
ω = ωcv is fulfilled. The first term in the expression for the
excitonic response Eq. (8) [i.e., the term retained in Eq. (9)]
displays a similar resonance, only here the denominator van-
ishes whenever an excitation frequency can be found matching
the fundamental or SH frequency. A double resonance is found
when both of these criteria can be fulfilled simultaneously. In
fact, the resonance structure can be brought out clearly by
expanding in partial fractions similarly to Ref. [32]. Then,
in the limit of vanishing broadening, the imaginary part
becomes proportional to two terms containing, respectively,
δ functions with vanishing arguments for fundamental and SH

frequencies matching exciton transition frequencies. The k

integrations necessary for evaluation of the one-electron result
are performed using the improved linear-analytic triangle
method [44], where care is taken to analyze double resonances
of Eq. (12) by subsequent refinement of the integration mesh.
Having calculated the imaginary part of χ (2), the real part is
found by Kramers-Kronig transformation. Also, in the exciton
calculation, a 67 × 67 k grid was applied and Nv = Nc = 8.

III. RESULTS AND DISCUSSION

The computational simplicity gained by introducing the
empirical model described above for electron-hole interaction
comes with the price of three additional empirical parameters,
namely the effective screening ε, the smearing of the Coulomb
interaction a, and the scissor shift �. We estimate these
parameters by comparing the resulting real part of the optical
conductivity calculated here with the experimental absorption
spectrum of Ref. [6] and the fully ab initio calculation of
Ref. [12]. In Fig. 2(a), we display the optical conductivity as
a function of screening ε and photon energy �ω relative to
the excitation energy of the fundamental absorption peak EA

(denoted the A peak) for a few values of the smearing factor
a. The experimental spectrum from Ref. [6] is displayed in
a similar color scheme as the bars on the right. The scissor
correction, determined for each ε and a, is found simply as the
energy shift taking the A peak to the experimentally reported
position [6] of EA = 1.88 eV. This value of � is plotted
as the dashed curve. Several clear trends are observed: Two
absorption peaks (termed the A and B peaks) dominate the
fundamental absorption edge. These features represent bound
exciton states, which in the basis of Eq. (1) can be mapped onto
single-particle excitations near the K and K ′ points from the
two highest parabolic SOC split valence bands to the lowest
spin-degenerate conduction bands. Features similar to the A
and B peaks can be found at excitation energies ∼0.5 eV
larger than the A excitation, moving closer to the A and B
peaks with increasing screening. These are comparable to the
A′ and B′ features recently reported in Ref. [12]. In that work,
it was also demonstrated how the inclusion of electron-phonon
interaction effectively smeared out the A′ and B′ peaks,
explaining their absence from the experimental spectrum [6].
The spectral range between 0.5 and 1 eV relative to the A
peak is dominated by a resonant state, in good agreement with
previous theoretical findings, and is typically identified as the
C peak [1,12]. This feature appears to be red-shifted relative to
the corresponding experimental peak, however, Qiu et al. [12]
demonstrate how electron-phonon interaction tends to merge
and blue-shift the A′, B′, and C features, forming a broad peak
near 2.9 eV reproducing the experimental spectrum closely.

We choose the values ε = 2.63, a = 6 Å, � = 500 meV,
and display the corresponding linear spectrum in Fig. 2(b).

The applied screening parameter is on the order of di-
electric functions reported by others [1,20,46], whereas the
applied smearing a is approximately equal to the interlayer
distance [21,34,47] in MoS2.

Good agreement with experiment, on par with earlier ab
initio results, is found [1,12] (noting that electron-phonon
interaction is expected to, as mentioned, smear out the A′ and
B′ features and “blue-shift” the C peak as in Ref. [12]) although
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FIG. 2. (Color online) (a) Linear optical sheet conductivity for
varying exciton screening parameters ε and smearing factors a as
a function of photon energy relative to EA. (b) Linear optical sheet
conductivity of a MoS2 ML calculated using the chosen parameters
compared with the single-particle and experimental results from
Ref. [6] (the latter in arbitrary units). A phenomenological broadening
of �� = 10 meV has been applied.

our model tends to overestimate the oscillator strengths of the
A and B peaks relative to the C feature when compared to

experiments and other theory. We note that errors in, e.g., peak
positions due to the neglect of exchange interaction may be
compensated by fitting of the empirical parameters. Further-
more, the overestimation in A/B peak intensity and the slightly
smaller scissor correction than was predicted ab initio in
Ref. [12] may be partly due to neglect of exchange interaction.

The calculated SH susceptibility of a MoS2 ML is shown in
Fig. 3(a), both at the one-electron (top) and exciton (bottom)
level. A small phenomenological broadening of 10 meV has
been applied.

In the one-electron picture, the dispersion of the low-energy
response near half the band gap is due to the 2ω term of
Eq. (12) only, and can, in analogy with the linear case, be
interpreted as optical transitions, for which the SH photon
energy matches transitions from the highest valence band to
the lowest conduction band near the K and K ′ points.

Two peaks are observed at fundamental photon energies
corresponding to half the photon energies of the A and B
peaks in the linear spectrum, although these are much weaker
relative to the remaining spectrum when compared to the
corresponding step heights in Fig. 2(b). Hence, we have
included a magnified view of this spectral region on the left
in Fig. 3(a). These peaks correspond to 2ω processes, and are
here termed the A/2 and B/2 features since they appear at half
the pump photon frequency of the corresponding linear peaks.

In this spectral region, the main difference upon including
scissor shift and excitonic effects is the fact that a superposition
of excited states, constructed from one-electron excitations
near the K and K ′ points, now yields only a single excited
state at the A/2 and B/2 positions (as opposed to step functions
in the density of excited states, as was the case for the
one-electron response). Hence, in the exciton picture, the
A/2 and B/2 peaks are much narrower and more symmetric
than in the one-electron case, but due to the near cancellation
of quasiparticle and exciton energy shifts, they are found at
approximately the same spectral position as the one-electron
features. Furthermore, a shift in oscillator strength enhancing
the B/2 peak slightly is observed.

Similarly, one might expect peaks corresponding to ω

processes at twice the fundamental photon energy. However, in
this region, 2ω processes close to double resonance dominate,
making the ω features difficult to observe.

Also, an intense peak is found in both the one-electron
and excitonic SH spectrum at fundamental photon energies
∼1.45 eV corresponding to half the energy of the C transition.
We denote this feature C/2, and note that its spectral position
fits very well with the experimentally observed SH generation
peak at 1.45 eV of Ref. [5]. This can readily be seen in Fig. 3(b),
where we compare our theoretical calculations (now including
a broadening of 30 meV realistic for comparison with room-
temperature experiments) with the spectrum recorded by
Malard et al. [5]. Again, we stress that the good agreement
of the one-electron result with the experimental spectrum is
rather deceptive since single-particle results generated using
a corrected band gap by including quasiparticle effects at the
scissor shift level in Eq. (12) completely fail to reproduce the
experimental peak position.

Even though a good agreement with experiments in peak
position and shape is generally observed for the one-electron
and exciton spectra, a rather large intensity difference is also
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FIG. 3. (Color online) (a) Second harmonic sheet response of MoS2 ML. (b) Comparison between experimental and theoretical SH
susceptibilities. A phenomenological broadening of �� = 10 meV has been applied in panel (a), while in (b) �� = 30 meV.

found, with calculated results roughly five times larger than
the experimental findings [5]. We note that this discrepancy
with the experiment is smaller than the value previously
reported [8], however. We attribute this to the fact that the
denser k-point sampling in our work allows resolution of the
weak peak at 1.4 eV (a much more intense, slightly blue-shifted
peak would follow from merging of the 1.4 eV feature with the
1.65 eV peak if broadening of �� ∼ 100 meV was applied).

Additionally, we stress that Kumar et al. [4] reported
susceptibilities two orders of magnitude larger than those
calculated by us (although it should be noted that these results
are not recorded relative to a known SH reference, as in
Ref. [5], introducing a large degree of uncertainty). Hence,
some uncertainties in the experimentally determined suscepti-
bilities must be expected for an atomically thin material.

Also, we here compare theoretical results calculated for
a free-standing MoS2 sheet with experiments performed on
a substrate where, e.g., strain or substrate phonons may be
important.

Thus, while we expect some disagreement between the
theory and experiment in the observed peak intensity, we
believe its position and shape are reproduced rather well.
Additionally, we expect the order of magnitude of the off-
resonance susceptibilities reported here to be realistic.

On a final note, we stress that only one experimental SH
spectrum in a rather narrow energy range has been published
for ML MoS2 to date [5]. Hence, a full comparison of the
theoretical and experimental SH resonance structure cannot
be made yet. In particular, it is of fundamental interest to
resolve the A/2 and B/2 peaks experimentally.

A comparison between the exciton and one-electron spec-
trum leads us to several conclusions regarding the effects of
excitons on the SH signal. First, in systems where the scissor
correction and exciton binding energy approximately cancel,
the low-energy features of the one-electron and exciton spectra
agree qualitatively, although it should be noted that features
arising from bound excitons become narrower and more sym-

metric compared to the one-electron result. Second, oscillator
strength does not appear to transfer automatically to low-
energy features to the degree observed in linear optics upon
including electron-hole attraction. However, relative intensity
redistribution (as compared to the one-electron calculation)
may occur, although general trends are difficult to predict.
Third, in systems with a large exciton binding energy, the
resonance structure of the SH spectrum changes dramatically,
removing and adding resonances. This is particularly clear for
the powerful peaks near 1.65 and 1.9 eV in the exciton SH
spectrum not found in the one-electron case.

IV. CONCLUSION

In conclusion, we have presented a new theoretical method
for evaluating SH response functions expanding upon the
work of Leitsmann et al. [31], which can quite generally
be implemented in any Bethe-Salpeter framework. We have
applied this method to MoS2, and demonstrate that the
inclusion of excitons has a dramatic impact on the SH spectrum
of this material. We find clear signatures of the A, B, and C
excitations, known from linear optics, also in the SH spectrum
at fundamental photon energies near half the corresponding
resonance energies in linear optics. Upon including excitons,
the A and B features become more symmetric and a slight
shift in intensity towards the B peak is observed. In the spectral
region between 1.2 and 1.7 eV we find good agreement of both
the one-electron (neglecting quasiparticle effects) and exciton
results with the experimental spectrum of Malard et al. [5].
We find the absolute values of the SH susceptibility reported
in Refs. [6] and [5] to agree better with our results than those
reported in Ref. [4]. For fundamental photon energies larger
than 1.5 eV, excitonic effects are seen to dramatically alter
the resonance structure of the SH response relative to the
one-electron case, introducing particularly intense peaks near
1.65 and 1.9 eV, and generally enhancing the intensity.
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