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Anisotropic behavior of quantum transport in graphene superlattices:
Coexistence of ballistic conduction with Anderson insulating regime
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We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based
superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood
formula, show that in disordered graphene superlattices the strength of multiple scattering phenomena can
strongly depend on the transport measurement geometry. This eventually yields the coexistence of a ballistic
waveguide and a highly resistive channel (Anderson insulator) in the same two-dimensional platform, evidenced
by a σyy/σxx ratio varying over several orders of magnitude, and suggesting the possibility of building graphene
electronic circuits based on the unique properties of chiral massless Dirac fermions in graphene.

DOI: 10.1103/PhysRevB.89.165401 PACS number(s): 73.23.−b, 72.15.Rn, 73.21.Cd

Graphene has received significant interest for its unusual
transport properties, including phenomena such as Klein
tunneling [1] and weak antilocalization [2]. These phenomena
preclude the formation of an insulating state at low levels
of disorder, in contrast to traditional 2D metallic systems,
which are predicted to exhibit insulating states for arbitrarily
small disorder strengths [3,4]. This unique behavior makes
graphene a promising material for a wide range of next-
generation technological applications [5]. One challenging
research objective is to maximize the transport anisotropy of
graphene, such that it remains a good conductor along one
direction while being much more resistive along the other.
Such control over the transport properties could be used to
direct charge flow and build electronic circuits or waveguides
[6], optical circuits [7], or communications devices [8]. For
most scattering sources, the transport properties in disordered
graphene remain isotropic. More complex forms of disorder,
such as structural deformations produced by interaction with
a substrate [9,10] or chemical doping [11], produce only
moderate transport anisotropies.

A way around this problem involves the creation of
graphene superlattices, which are formed from a periodic
modulation of the electrical, mechanical, or chemical prop-
erties of pristine graphene. It has been theoretically predicted
that a strongly anisotropic Fermi velocity can be induced by
patterned periodic modifications of the graphene surface [12].
Based on this work, the construction of novel types of graphene
electronic devices and circuits from structurally-perfect en-
gineered superlattices was foreseen, attracting significant
attention [13–15]. To date however, the inherent disorder
introduced through conventional lithography techniques and
top-down patterning approaches has impeded the realization
of graphene-based superlattices, whose novel transport and
device characteristics depend on band-structure engineering,
and are thus highly sensitive to disorder [16].

Here, we wish to advocate a different approach to nanos-
tructuring graphene, where instead of considering disorder
an inevitable drawback, it serves as beneficial for tuning the
properties of graphene. While structural disorder inherent
to any fabricated graphene-based superlattice jeopardizes
the control of band-structure features, we demonstrate that

disorder enables the coexistence of transport regimes which
are generally incompatible in conventional conducting ma-
terials. Using efficient numerical methodologies, the scaling
properties of quantum transport through disordered graphene-
based superlattices are demonstrated to become exceedingly
anisotropic, resulting in the coexistence of a ballistic transport
channel in one direction and a highly resistive channel in the
other. We note that similar ideas have been proposed within
the field of photonic crystals [17].

We consider a disordered, rectangular lattice of perforations
in an otherwise pristine graphene sheet. A given superlattice
is referred to via parameters {Nx,Ny}, with Nμ denoting the
average number of hexagons between the center of the holes
along each direction. The lattice constants of the pristine
superlattice are Ax = √

3Nxa and Ay = Nya, respectively,
with a = 0.246 nm the graphene lattice constant. The average
size of the antidots is defined via the radius R, which we fix
at R = 3a. We consider superlattices for which Nx/Ny > 1
and refer to the y and x directions as the easy and the hard
directions, respectively. Disorder is included via parameters
δx , δy , δR , prem, and Nrem. Here, δx , δy , and δR denote the
widths of random fluctuations in the centers and radii of
holes, respectively. Edge disorder along the holes is added
via an iterative process repeated Nrem times, in which edge
atoms are removed with probability prem. We remove any
dangling bonds in the geometry, i.e., all carbon atoms have
at least two nearest neighbors. While structural relaxation is
not included, the absence of dangling bonds leads us to expect
only a minor influence of potential geometrical relaxation
[18]. Throughout this paper we take δx = δy = 2a, δR = 0.5a,
prem = 5%, and Nrem = 2. An example of a disordered {16,9}
superlattice is illustrated in Fig. 1. Note that the figure only
shows a small, representative domain of the full structure used
in the calculations, which contains several millions of atoms.
We stress that while we only show results for Nx > Ny , we
have confirmed that the results do not depend qualitatively on
the orientation of the superlattice with respect to the graphene
sheet.

We employ a nearest-neighbor tight-binding model with
hopping element t = −3 eV and set onsite energies to
zero. Transport properties are determined numerically via
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FIG. 1. Geometry of a representative domain of a disordered
{16,9} superlattice. Carbon atoms are indicated with black points. The
gray shading indicates the position of holes in the pristine geometry.

an order-N real-space Kubo approach [19–22]. The time-
and energy-dependent diffusion coefficient is calculated via
Dx(E,t) = �X(E,t)2/t , with the mean quadratic displace-
ment �X(E,t)2 = Tr[δ(E − Ĥ )|X̂(t) − X̂(0)|2]/ρ(E), where
ρ(E) = Tr[δ(E − Ĥ )] represents the density of states. Traces
are approximated via initial random phase states and the
Lanczos method [23], while the time evolution operator is
expanded in Chebyshev polynomials. We use 1500 iterations
in the Lanczos method, with broadening included via an
imaginary part η = 0.04 eV of the energy, while the number of
Chebyshev polynomials is determined by requiring unitarity
of the time evolution operator (within an error of <10−6).
The Kubo conductivity, including quantum interference ef-
fects, can be calculated from the diffusion coefficients as
σxx(E,t) = e2ρ(E)Dx(e,t)/2, while the semiclassical conduc-
tivity reads σ SC

xx (E,t) = e2ρ(E) maxt Dx(E,t)/2. Transport
properties along the y direction are calculated similarly.

In Fig. 2(a), solid lines illustrate the density of states
(DOS) for a pristine {16,9} superlattice. Note the quasi-one-
dimensional nature of the DOS with signatures of van Hove
singularities, consistent with a picture of the superlattice as
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FIG. 2. (a) Density of states of a pristine (solid line) and a
disordered (dashed line) {16,9} superlattice. Note the absence of
any signatures of van Hove singularities for the disordered structure.
The inset shows the ratio of group velocities vy/vx of the pristine
superlattice. (b) Density of states near the Dirac point for three
different disordered superlattices {Nx,9}. (c) Density of states at
the Dirac point for several disordered superlattices, illustrating the
approximately linear dependence of the Dirac point DOS on the hole
density.

an array of weakly coupled nanoribbons aligned along the
easy direction. The large aspect ratio of the superlattice unit
cell results in a substantial anisotropy of the group velocity
vy/vx , as illustrated in the inset of Fig. 2(a). Note that
for larger energies (not shown), such anisotropy is much
less pronounced, as expected from the suppression of band
structure effects for energies where the electron wavelength
becomes much smaller than the hole spacing. While an
anisotropic Fermi velocity should affect transport properties,
any effect relying critically on periodicity is bound to be
quenched significantly in experimental realizations due to the
presence of disorder.

We here consider this issue by focusing on lattices
displaying significant structural imperfections, inspired by
recent experimental fabrications of graphene superlattices
[24]. In stark contrast to the pristine case, the DOS of such
disordered structures [dashed line in Fig. 2(a)] becomes largely
featureless, except for a peak at the Dirac point. The disorder
is thus sufficiently strong to wash out the characteristics of
the band structure associated with the superlattice. Figure 2(b)
shows a zoom of the zero-energy DOS peak. While the DOS
resembles that of bulk graphene with short-range impurities
[25], the source of the zero-energy peak is different in our
case. We attribute the zero-energy peak to states localized
predominantly on the hole edges, emerging due to local
sublattice imbalances [18,26]. Consistent with this picture, we
illustrate in Fig. 2(c) the proportionality of the zero-energy
DOS with the density of holes, quantified here via the
dimensionless quantity 1/(NxNy).

As discussed above, the disorder considered is strong
enough to quench any effects emerging due to the periodicity of
the superlattice (such as anisotropic group velocities). Instead,
the scattering sources are determined by the randomness in
the positions, radii, and internal geometries of the holes.
Despite the largely featureless density of states, this results
in drastically different transport properties along the two
directions, as illustrated in Fig. 3, showing the diffusion
coefficients Dμ(E,t) for different energies within 1 eV of the
Dirac point. Along the easy direction, the time dependence
of the diffusion coefficients exhibits (within our accessible
timescale of 20 ps) a quasiballistic behavior since Dμ does
not saturate. In sharp contrast, along the hard axis Dμ(E,t)
manifests a weak increase at short times before reaching its
maximum value and then strongly decays in time, as a result
of quantum interferences and localization phenomena [27].
We note that the total elapsed time of 20 ps considered in our
calculations corresponds to sample dimensions on the order
of 800−1000 nm along the easy direction and 100−180 nm
along the hard direction [using Lμ(E) = 2

√
tmaxDμ(E,tmax)].

These results suggest that not only will conductivities along
the two directions be of different orders of magnitude, but
the temperature dependence should also indicate different
transport regimes. In particular, for longer elapsed times
(corresponding to wave-packet exploration of larger samples),
a metallic behavior for σyy(T ) should be measured along
one direction, while an insulating behavior for σxx(T ) should
develop along the other.

In Fig. 3(c) we show the maximum value of the diffusion
coefficient within the simulated time span. We attribute the
sharp dip near zero energy to the localized zero-energy modes
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FIG. 3. (Color online) Time- and energy-dependent diffusion
coefficients Dμ for a disordered {16,9} superlattice. Solid blue
(red dashed) lines show the diffusion coefficient along the easy
(hard) direction. (a) Short-time behavior of Dμ, illustrating strong
localization along the hard direction. (b) Long-time behavior of
Dμ, illustrating quasi-ballistic transport along the easy direction. (c)
Maximum diffusion coefficients within the simulation time span,
shown versus energy. The symbols indicate the energies to which
results in panels a and b correspond.

discussed above. As these states are predominantly localized
around hole edges, they are naturally more sensitive to multiple
scattering phenomena. Indeed, increasing the edge disorder
further deepens the zero-energy feature, while features outside
the energy range of the DOS peak are comparably much less
affected. Furthermore, we find that the peaks in the mean
free path on either side of the Dirac point coincide with
the minimum of the DOS at the corresponding energies (see
Fig. 4).

We extend our analysis by superimposing a random
distribution of long-range impurities over the disordered su-
perlattice potential. This enforces a saturation of the diffusion
coefficients along both directions, giving access to mean free
paths. We consider the addition of NI long-range impuri-
ties, included in the onsite energies Vn = 〈n|H |n〉 as Vn =∑NI

i εi exp[−|rn − ri |2/(2ξ 2)], where ξ sets the effective
range, while the εi ∈ [−W/2,W/2] are randomly distributed
[28–30]. We take usual parameters W = |t | and ξ = √
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FIG. 4. (Color online) (a) Directional mean free paths l∗e,μ, in
units of the graphene lattice constant, for disordered superlattices
{Nx,9} with long-range impurities. Red lines show results for the
“hard” direction, l∗e,x , while blue lines indicate results for the “easy”
direction, l∗e,y . (b) Corresponding semiclassical conductivities, in units
of 2e2/h, along each direction.

and consider a very low impurity concentration of 0.02%,
sufficient to give rise to a diffusive regime but low enough so
that scattering remains dominated by the superlattice-driven
random potential. The elastic mean free path is calculated
from the maximum of the diffusion coefficient, le(E) =
Dmax(E)/(2vF ), with vF the Fermi velocity and Dmax(E)
the maximum of the average diffusion coefficient, D(E,t) =
[Dx(E,t) + Dy(E,t)]/2. To study the transport anisotropy of
the designed structures, we define the directional effective
mean free paths l∗μ(E) ≡ maxt Dμ(E,t)/[2vμ(E)]. We note
that while we find a significant renormalization of the Fermi
velocity for pristine superlattices, such an effect, as discussed
above, is absent for the level of disorder we consider here. We
thus use the pristine graphene Fermi velocity in all calculations
of mean free paths.

As is evident in Fig. 4(a), the anisotropy of the structure is
readily apparent in the mean free paths l∗μ, which not only differ
in magnitude, but also exhibit distinct energy dependencies,
with l∗x (E) almost featureless except for a small dip near
zero energy. The energy dependence of l∗y is considerably
richer, with a behavior similar to that seen in Fig. 3(c), albeit
with features slightly smeared by the addition of long-range
impurities. Our interpretation of the energy dependence of
l∗y remains the same as that discussed above in relation to
Fig. 3(c). The directional mean free paths in Fig. 4(a) are shown
for increasing values of Nx , illustrating how this parameter
serves as an effective way of tuning the anisotropy of the
scattering-mediated transport. Indeed, l∗y is approximately
linearly dependent on Nx for energies near the Dirac point.
We stress that even though the directional mean free paths
are of similar magnitude near the Dirac point, the transport
regimes remain distinctly different, namely diffusive along
the easy direction while strongly localized along the hard
direction. The corresponding semiclassical conductivities are
shown in Fig. 4(b), illustrating how, along the easy direction,
the distinct behavior of the mean free path near zero energy is
counteracted by the density of states, resulting in a largely flat
plateau near the Dirac point. Note that the width of the plateau
decreases as Nx is increased, while the height of the plateau
increases approximately linearly with Nx . The semiclassical
conductivity along the hard direction shows an entirely
different energy dependence, with a slight peak near the Dirac
point. We find that the zero-energy semiclassical conductivity
is nearly independent of Nx , and shows an approximately
quadratic dependence on Nx at nonzero energies near the
Dirac point. The horizontal dashed line in Fig. 4(b) indicates
the minimum value σ SC

min = 4e2/πh, a value that has been
demonstrated to fix the minimum semiclassical conductivity
in disordered graphene [27,31].

While the ratios σ SC
yy /σ SC

xx of the semiclassical conduc-
tivities shown in Fig. 4 are less than an order of mag-
nitude, transport along the hard direction enters the An-
derson localized regime, which will further maximize the
resulting transport anisotropy. To illustrate this, we study
the disordered {16,9} superlattice in absence of long-range
impurities. Figure 5(a) shows the conductivities σμμ as a
function of sample dimensions Lx and Ly . The location
of the minimum semiclassical conductivity σ SC

min = 4e2/πh,
indicated by the horizontal dashed line in Fig. 5(a), separates
the different transport regimes. For σμμ > σ SC

min the system
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FIG. 5. (Color online) (a) Conductivity vs length for the disor-
dered {16,9} superlattice. Red lines show results for the “hard”
direction σxx , while blue lines indicate results for the “easy” direction
σyy . Note the logarithmic scale on the ordinate. The horizontal dashed
line indicates the minimum value σ SC

min in the absence of quantum
interference. (b) Ratio of conductivities calculated at the maximum
lengths of the simulated time span of 20 ps. The dashed line indicates
the ratio when quantum interference effects are neglected for σxx .
Circles indicate the energies corresponding to the results in panel a.

remains metallic and the conductivity remains finite down to
zero temperature, whereas the length-dependent decay of σμμ

below σ SC
min is evidence of the dominant role played by quantum

interferences, which successively drive the electronic state
from weak localization to the strong (Anderson) localization
regime.

Note that outside the initial transition regime, conduc-
tivity along the easy direction becomes more than an
order of magnitude larger than along the hard direction
within our accessible computational time (or length) scales.
This trend is illustrated in Fig. 5(b), where the ratio
σyy(Ly,max)/σxx(Lx,max) is shown. The strongest anisotropy is
seen near the Dirac point, where scattering due to edge states
around the holes is most pronounced. As we further upscale
sample size, the transport anisotropy σyy(Ly)/σxx(Lx) will

continuously increase. A crossover to very strong anisotropy
will take place once the sample size along the hard direction
reaches the directional localization length ξx . This length scale
can be estimated using ξx(E) = l∗x (E) exp[πhσ SC

xx (E)/(2e2)]
[3]. For the {16,9} superlattice in the absence of long-range
impurities, the localization length along the hard direction is
of the order of 10 nm, while the localization length along the
easy direction is much larger, of order of several thousands of
nanometers.

In an experiment, our results suggest that depending on
the measurement geometry, the low temperature conductivity
could manifest a variable range hopping in the hard direction
(similar to the case of damaged graphene [32]) whereas metal-
lic behavior will be measured in the perpendicular direction.
To date such strong conductivity anisotropy has never been
reported in metallic materials, or disordered graphene. By
applying an external magnetic field, one may further tailor the
anisotropy in the semiclassical regime [33], while the modula-
tion of magnetotransport features at low fields and the quantum
Hall effect at high fields both deserve further consideration.

In conclusion, we have shown that disorder, while destroy-
ing anisotropic velocity renormalization in perfect graphene
superlattices, can result in large anisotropic conductivities by
inducing strong localization along the hard direction of trans-
port. These results suggest that disorder could serve as an in-
herent tool in the field of nanostructured graphene, giving rise
to different transport properties of massless Dirac fermions.
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