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Friedel oscillations in graphene: Sublattice asymmetry in doping
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Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel
oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically
transparent fashion that Friedel oscillations in graphene have a strong sublattice asymmetry. As a result, the
presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore,
such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly
distributed in graphene but prefer to occupy one of its two distinct sublattices. We argue that this feature is not
exclusive of nitrogen and that it can be seen with other substitutional dopants.
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I. INTRODUCTION

Nanoscale characterization techniques are fundamentally
based on the changes experienced by otherwise pristine
materials in the presence of symmetry-breaking impurities
and defects. Such symmetry breaking, for example in a Fermi
gas, induces perturbations in the electronic environment of the
gas through the scattering of its electrons.1 These changes in
the electronic scattering manifest as spatial oscillations called
Friedel oscillations (FOs). They are present in quantities like
the local density of states (ρ) and the carrier density (n), which
radiate away from the location of the symmetry-breaking
perturbation and decay with the distance from the perturbation
D. The decay rate is linked directly to the dimensionality of the
system and to some extent the resolution of the measurement.
Much attention has been focused recently on such symmetry
breaking in graphene,2–9 a hexagonal lattice of sp2 hybridized
carbon with a wide range of unique properties.10 Figure 1
shows a schematic of the lattice with several different kinds
of impurities, where atomic sites in the two interconnected
triangular sublattices composing graphene are represented by
black and white symbols. In graphene, the vanishing of the
density of states at the Dirac point affects the decay rate of the
change in carrier density (�n) from D−2, expected in a 2D
system, to a faster D−3 rate for ungated/undoped graphene,
and the oscillations disappear due to their commensurability
with the lattice spacing.2,4,8

Previous studies examining the analytical behavior of �n

FOs in graphene have generally relied on a linearization
of the electronic band structure near the Dirac points and
the introduction of a momentum cutoff.2–4,8 In the current
paper, we present an alternative framework which removes
these assumptions and matches numerical results exactly in
the long-distance limit and over large energy ranges, paving
the way for applications to other electronic quantities and
graphenelike materials. The methodology we use is similar
to that used to describe the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction in graphene,11,12 a coupling effect be-
tween magnetic impurities which has been studied extensively
and, like FOs, is another manifestation of symmetry breaking,
making this work a natural extension of those techniques.

This methodology is applied to a range of commonly
investigated impurity configurations, namely single and double
substitutional impurities, unrelaxed vacancies, and realistic
instances of the more commonly found top- and bridge-
adsorbed atoms. The analytical expressions derived for the
fluctuations in electron density for these impurities are corrob-
orated with numerical calculations to confirm the predicted
behavior. We note how important features of the FO are
dictated by the bipartite nature of the graphene lattice and
furthermore, that different behaviors are observed for adsorbed
impurities connecting symmetrically or asymmetrically to the
two sublattices in graphene. The framework is extended to
consider similar oscillations which occur in the formation
energy of two impurities introduced into the graphene lattice
in close proximity to each other. Such FOs in formation energy
are consistent with recent experimental findings of sublattice-
asymmetric doping of nitrogen substitutional impurities in
graphene.13,14 The ability to dope one sublattice of graphene
preferentially opens many possibilities, such as the opening of
a band gap15 and spin-polarized electron transport,16 and it is
very interesting that such behavior may be the manifestation
of the strong sublattice dependence seen in FOs in graphene.

The paper is organized as follows. Section II introduces
the relevant mathematical methods required, in particular the
Green functions for graphene and the perturbations associated
with different impurity configurations. Section III details the
analytic approximations for the FOs in �n for the range of
impurity type shown in Fig. 1 and compares their predictions
to fully numerical calculations. As an application of our
methodology, Sec. IV investigates the appearance of sublattice
asymmetry in nitrogen-doped graphene and presents a simple
tight-binding model for the long-range sublattice ordering
witnessed in recent experiments.

II. METHODS

A. Green functions

We begin by outlining the Green functions (GFs) methods
which play a central role in our approach as the Friedel
oscillations in electron density and local density of states,
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FIG. 1. (Color online) Schematic of a graphene lattice with
impurity bonding types, shown with the lattice vectors a1 and
a2. Graphene can be thought of as two interpenetrating triangular
sublattices, black (•) and white (◦). Nearest neighbor atoms are
separated by a distance of a = 1.42 Å. Shown are two substitutional
impurities (A and B) separated by distance D = 1, equivalent to 3a,
in the armchair direction, and also examples of an unrelaxed vacancy
(C), a top-adsorbed adatom (D) and a bridge-adsorbed adatom (E).

�ρ and �n, respectively, are directly obtainable using them.
The retarded single-body GF, Gij , between two cells i and j

in the pristine lattice is calculated through diagonalization of
the nearest-neighbor tight-binding Hamiltonian using Bloch’s
theorem and can be expressed as an integral over the Brillouin
zone11

Gij (E,r) =
∫∫

B.Z.

dk2

2π2

eik.r

E2 − t2|f (k)|2
[

E tf (k)
tf ∗(k) E

]
,

(1)

where the energy E includes an infinitesimal positive imagi-
nary part, t = −2.7 eV is the pristine graphene lattice hopping
integral, r = ma1 + na2 (where m,n ∈ Z) is the spatial separa-
tion of the unit cells i and j containing the relevant sites which
is expressed in terms of the lattice vectors a1 and a2 shown
in Fig. 1 and the variable f (k) = 1 + e−ik.a1 + e−ik.a2 . In
our analytic work, we principally examine armchair direction
separations, defined by m = n and work in distance units of
m+n

2 . The matrix form of Eq. (1) captures the intersublattice
nature of the GF calculation between the two sites in the
graphene unit cell, such that

Gij (E,r) =
[

g••
ij (E,r) g•◦

ij (E,r)
g◦•

ij (E,r) g◦◦
ij (E,r)

]
,

where g
s1,s2
ij is the pristine lattice GF from the s1 sublattice

site in cell i to the s2 sublattice site in cell j . For conciseness
we will omit the sublattice indices from hereon and use gij to
denote the pristine lattice GF between two sites on the same
sublattice sites unless specified otherwise.

To aid numerical calculation one of the two integrals
in Eq. (1) can be solved analytically, and in some cases
it is possible to approximate the second integral using the
stationary phase approximation (SPA).11 These methods take
advantage of the highly oscillatory nature of the integrand
for large r and to approximate the integral at values near the

stationary points of the phase, ignoring the highly oscillating
parts which mostly cancel each other. The advantage of the
SPA is that it is applicable across the entire energy band, with
no intrinsic momentum or energy cutoffs, although maximum
achievable experimental gating (through ion gels) is limited to
EF ∼ 0.5|t | currently.17 Applying the SPA assumption to gij

gives us a sum of terms in the form

gij = A(E)eiQ(E)D

√
D

, (2)

where the coefficients A(E) are dependent on the sublattice
configuration of sites i and j and the direction between them.
For two sites on the same sublattice separated in the armchair
direction we find

A(E) = −
√

2i

π

√
E√

(E2 + 3t2)
√

t2 − E2

, (3)

valid for |E| < |t | where D = m+n
2 is the separation between

the sites i and j and Q(E) is associated with the Fermi
wave vector in the armchair direction. This approximation
works best for separations beyond a few lattice spacings in
the armchair and zigzag directions as other directions are not
always analytically solvable.11 For an armchair separation
of D = 5 the agreement between analytic and numerical
calculations of gij is excellent, with less than 1% deviation
over 95% of the energy spectrum.

To calculate the fluctuations in properties of a system
when an impurity is introduced, we will usually require the
difference between the GFs describing the pristine (ĝ) and
perturbed (Ĝ) systems. This can be expressed, using the Dyson
equation,18 as

�Ĝ = Ĝ − ĝ = (Î − ĝV̂ )−1ĝ − ĝ, (4)

where V̂ describes the potential applied to the pristine system
to introduce the impurity. By finding suitable descriptions and
parametrizations for different impurities in the graphene lattice
we can find directly the change in the corresponding perturbed
lattice GF �Ĝ and also how the ρ and n are altered from the
pristine system. Exact parametrization, however, is not that
important when considering the qualitative features of the phe-
nomena we investigate here. More precise parametrization can
be found, for example, by comparison to DFT calculations.19

B. Impurities

In this section we present the types of impurities that will
be considered and the respective perturbative potentials used
to describe them. Substitutional impurities in graphene, shown
schematically by A and B in Fig. 1, occur when single carbon
atoms are replaced with dopant atoms such as nitrogen. The
simplest way to model them is by introducing a perturbation
V̂ Subs. (Table I) which alters the onsite energy of the site in
question by a quantity λ. The onsite energy of the carbon
sites neighboring the impurity and their overlap integrals
with the impurity site are presumed to be unchanged in this
simple model. However they can be easily incorporated, as can
additional orbitals beyond our single orbital approximation for
the impurities, if a more accurate parametrization is required.
Testing this assumption by inducing an additional small change
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TABLE I. Perturbation operators (V̂ ) and the corresponding fluctuation in the system GF at a general lattice site i (�Gii). Our notation
follows the rule that a corresponds to an adsorbate atom site and the numerical indices specify the location of impurities, e.g., 0 for a
substitutional impurity and 1 or 2 for the carbon host sites of adsorbates.

Substitutional Vacancy Top Bridge

V̂ λ|0〉〈0| limλ→∞ λ|0〉〈0| |1〉τ 〈a| + c.c. |1〉τ 〈a| + |2〉τ 〈a| + c.c.

�Gii
g2
i0λ

1−g00λ
∼ g2

i0
−g00

g2
i1|τ |2gaa

1−gaag11|τ |2
(gi1+gi2)2gaaτ2

1−(g11+g12+g21+g22)gaaτ2

of the onsite energies of neighboring sites, or the hoppings
between the impurity and these neighbors, reveals that the
behavior is unchanged except for minor variations of �n on
sites very close to the central impurity. The presence of a
substitutional impurity at site 0 induces a fluctuation of the
diagonal matrix element GF, for example �Gii at site i, which
can be found through applying V̂ Subs. to Eq. (4), the result of
which is shown in Table I.

Vacancy defects, formed by the removal of a carbon atom
from the graphene lattice [Fig. 1(C)], can be considered as
a phantom substitutional atom in the limit where the onsite
energy λ → ∞. In a physical context this is effectively
excluding the state to the electrons in the lattice. Experimen-
tally, vacancies can be induced by ion bombardment.20 An
approximation of the corresponding �GSubs.

ii , using the limit
λ → ∞, is shown in Table I. Alternatively this can be modeled
by removing the hopping between the site and the nearest
neighbors.

Adsorbates, which bind to atoms in the graphene lattice,
are characterized by an atom with onsite energy εa which is
initially disconnected from the graphene sheet with an onsite
GF gaa = 1/(E − εa). A top-adsorbed adatom [Fig. 1(D)] is
connected to the lattice by the perturbation V̂ Top in Table I
which connects the adatom and site 1 in the graphene lattice,
where τ is the overlap integral between the adatom and the host
lattice site. Similarly, a bridge-adsorbed adatom [Fig. 1(E)] is
attached to two carbon host sites in the lattice through an extra
term in V̂ . The onsite GF fluctuations �G

Top
ii and �G

Bridge
ii are

again shown in Table I.

C. Charge density perturbations

The effect of a general perturbation V̂ on the charge density
on site i (�ni) is calculated through an integration of the
change in LDOS, �ρi ,

�ni =
∫ ∞

−∞
dEf (E)�ρi , (5)

where f (E) is the Fermi function and �ρi = − 2
π

Im�Gii

relates the change in local density of states to the perturbed
diagonal GF �Gii . Physically, ni is the number of states below
the Fermi energy (EF ) that are filled by electrons on site i,
where ρi describes the energy distribution of these states at the
site. When calculating �n numerically the integral is evaluated
along the imaginary energy axis to avoid discontinuities along
the real axis. This transformation is done through forming a
contour in the upper half plane, which contains no poles, and
evaluating the contour integral via Cauchy’s theorem.

D. Changes in total system energy

Green functions methods can also be used to quantify other
phenomena associated with the lattice, for example the change
in the total system energy due to the bonding of impurities
follows from a sum rule and is given explicitly by the Lloyd
formula21

�E = 2

π
Im

∫ ∞

−∞
dEf (E) ln det(Î − ĝV̂ ). (6)

This quantity is directly related to V̂ and is useful for finding
energetically favorable impurity positions and can be used to
investigate the dispersion and clustering of impurities.22,23 For
multiple impurities the expression will contain interference
terms which result in changes from the single impurity case
and can reveal favored configurations in the lattice.

III. FRIEDEL OSCILLATIONS IN CHARGE
DENSITY AND LDOS

A. Weak substitutional impurities

To begin, we consider the charge density variations �n at all
lattice sites surrounding a substitutional impurity of strength
λ = |t |, situated on a site in the black sublattice. A numerical
evaluation using Eq. (5) and �GSubs.

ii from Table I yields the
contour plots in Figs. 2(a) and 2(b), where we see FOs in the
charge density radiating away from the central impurity on
both sublattices with a wavelength determined by EF . There
is clear sublattice asymmetry in �n between the black (a)
and white (b) sublattices with �n swapping signs between
the sites in the same unit cell. This signature is important
when considering multiple impurities, which we will discuss
in Secs. III B and IV. It is possible to approximate �ρ and
�n along the armchair direction [dashed line in Fig. 2(a)] by
applying the SPA approach and the Born approximation, which
is valid for weak scatterers of strength λ � |t |, to �GSubs.

ii ,
resulting in

�ρi ≈ −2

π
Img2

i0 (7)

�nSubs.
i ≈ −λ

2

π
Im

∫ ∞

−∞
dEf (E)g2

i0 , (8)

where g2
i0 can then be expressed using Eq. (2) as A2e2iQ(E)D

D
and

we can solve the integral via contour integration in the upper
half of the complex energy plane, the poles in the integrand
being given by the Matsubara frequencies. Taking the limit of
zero temperature gives the sum

�nSubs.
i ∼ λ

2

π
Im

∞∑
�=0

γ�(E)

D�+2
e2iQ(0)D . (9)
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FIG. 2. (Color online) The FO introduced by a substitutional impurity of strength λ = 0.1|t |. Numerical contour plots of FOs in �n on the
black (a) and white (b) sublattices at EF = 0.2|t | with the impurity located at the center, calculated using Eq. (5). Plot (c) shows a cross section
of numerical (black circles) and SPA (green line) calculations of �n on the black sublattice, and the numerical (blue dashed line) calculation
for the white sublattice illustrating the sign change of �n, along the dashed line shown in panel (a) for EF = 0.2|t |. The inset shows a log-log
plot of the black sublattice data with a regression line (red, dashed) corresponding to a decay of D−2. (d) shows �n at the same locations
when EF = 0 where we see an absence of oscillations and a quicker decay, shown by the D−3 regression line in the inset. Panel (e) is a cross
section of �ρi for the same impurity and locations, with numerical results for the black (white) sublattice given by the black, solid (red, hollow)
symbols. Analytic SPA results are given by the corresponding dashed lines, and the inset shows a log-log plot of the data with a red dashed
line corresponding to a decay of D−1.

The sum coefficients γ�(E) are related to the SPA coefficients
and defined as

γ�(E) = (−1)�B(�)

(2Q(1))�+1
, (10)

where B = A2 and X(�) denotes the �th derivative of the
function X with respect to energy. B(�), Q(0), and Q(1) are
evaluated at the Fermi energy EF . The first order term of �n

thus decays as D−2 with an oscillation period determined by
Q0, and thus kF [Fig. 2(c)]. At the Dirac point we find that
Q0 → π in the phase factor which causes the sign-changing
oscillations to become commensurate with the lattice spacing

and seemingly disappear for all terms. Additionally, the energy
dependent term B0 → 0 and so the leading term of the series
γ0 = 0. Taking the next leading term of the series in Eq. (9)
(� = 1) gives �ni decaying as D−3, and a comparison between
the SPA approximation and the numerical result is shown in
Fig. 2(d). We also note that �ρ decays as D−1 as shown in
Fig. 2(e) away from the Dirac point, which can be inferred
directly from Eq. (7). The sublattice asymmetry is quite clear
in both the cross section of �n [panel (c)] and �ρ [panel
(d)] in Fig. 2. In both cases the sign of the fluctuation
is opposite for neighboring sites on opposite sublattices.
Oscillations in �ρ can be seen directly through scanning
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tunnel microscopy. The opposing sign of the oscillations is
a signature of FOs in �ρ, �n, �E and also of the RKKY
interaction.12 These results agree with previous work,2,4 but
due to our approximation method requiring large D we are
limited to the long-range behavior in the ranges of 5+ unit
cells and so miss short wavelength features which are present
in the region immediately surrounding an impurity, which have
been investigated in more depth by Bacsi and Virosztek.2,3

In addition to what is shown in Fig. 2 we found excellent
agreement between numerical and analytic calculations for all
energy and sublattice configurations.

B. Multiple weak substitutional impurities

When considering two or more substitutional impurities
we can extend the matrix V̂ Subs. (Table I) to include additional
sites by addition of extra perturbations at the corresponding
locations, for example for two identical impurities at arbitrary
sites A and B we have V̂ = λ|A〉〈A| + λ|B〉〈B|. Figure 3(a)
shows a contour plot of �n on the black sublattice for two such
impurities spaced by D = 80 in the armchair direction, where
the SPA can be used to approximate �n along the dashed line.
Generally, if λ � |t | then we find through Eq. (5) and the Born
Approximation that to first order �n has the form

�nMult.
i ≈ − 2

π
Im

∫
dEf (E)(�A + �B + �AB), (11)

where

�A = giAλgAi,

�B = giBλgBi,and

�AB = 2giAgABgBi − giAgBBgAi − giBgAAgBi.

�A and �B arise from the effects of the individual isolated
impurities and the extra term �AB describes the interference
effect. The approach for the single impurity can be adapted
and applied to all three terms, where the integration of �A

and �B will be identical to the single impurity case and the
interference term �AB can be approximated well if A and B

are at least a few unit cells apart. Clearly �AB is dependent
on λ2, but also on the separation of A and B. Thus this term
decays rapidly when the scatterers are weak and/or separated
by several unit cells. Consider a cross section of the charge
density fluctuations indicated by the black dashed line in
Fig. 3(a). Applying the SPA derived in the previous section we
can match the interference pattern seen, as shown in Fig. 3(b),
achieving an excellent match between analytic and numerical
methods. By breaking apart the SPA terms we find that the
dominant contribution is from the isolated impurities [given by
�A (black curve) and �B (red curve) in Fig. 3(c)] with a very
small contribution from the interference term �AB regardless
of chosen energy [Fig. 3(d)]. If A and B are arranged to be
on opposite sublattices, as shown in Fig. 3(e), a clear change
in �n can be seen compared to the same sublattice case in
Fig. 3(a). By switching B to the white sublattice we have
induced an inversion in the �B contribution to �n resulting in
a more complex interference pattern.

Whilst the SPA works well when D is suitably large
and λ small, the simple approximation breaks down when

FIG. 3. (Color online) (a) Numerical simulation of �n FOs on
the black sublattice for two weak scatterers λ = 0.1|t | separated by
40 unit cells in the armchair direction at EF = 0.2|t |. As the chosen
Fermi energy lies in the linear dispersion regime, the interference
pattern that arises is similar to that seen in classical waves. (b)
Cross section of �n along the dashed line in the top contour plot of
analytic (green) and numerical (black symbols) calculations. (c) and
(d) Contributions to �n from the terms �A (black), �B (red, dashed),
and �AB (blue) per Eq. (11). (e) As (a) but with the impurities in a
black (left) and white (right) configuration.

the impurities are moved to within a couple of unit cells
as the contribution of the interference terms becomes more
important, especially for impurities on opposite sublattices. In
addition to the interference term �AB , the region of significant
overlap between the �A and �B increases and the FO patterns
observed become more complex. In Fig. 4 we examine the
numerical contour plot on the black sublattices of �n for
two such configurations, namely two substitutional atoms of
the type considered in Fig. 2 which are either next-nearest
neighbors residing on the same sublattice (left panel) or
nearest neighbors on opposite sublattices (right panel). These
configurations are shown schematically in the insets. For the
first case, we note the strongly sublattice dependent behavior
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FIG. 4. (Color online) Black sublattice plots for quasi-nearest-
neighbor impurities (left) and impurities sharing the same unit cell
(right) as demonstrated in the insets for λ = |t | and EF = 0.2|t |. The
pairwise interaction and opposite sign of each impurity’s individual
contribution leads to a complex �n pattern in the second case.

noted in Sec. III A is still present, whereas in the nearest-
neighbor impurity case it has been mostly washed out due to
a superposition of the features observed in panels (a) and (b)
of Fig. 2. The strikingly different interference patterns present
clear signatures for the two cases, and this general qualitative
difference in FOs may make impurity configurations easier
to distinguish. The importance of this cross sublattice effect is
apparent when considering FOs in other quantities, and will be
discussed later in the context of energetically favorable doping
configurations for multiple nitrogen substitutional impurities
in graphene.

C. Vacancies and strong scatterers

Taking the limit λ → ∞ for a substitutional impurity, as
shown in Table I, corresponds to placing a vacancy in the

lattice and yields

�nVac.
i ≈ −2

π
Im

∫ ∞

−∞
dE

f (E)g2
i0

−gii

. (12)

We note that the change in charge density on the impurity site,
given by gi0 = g00 in Eq. (12), becomes �n0 = −1 which
corresponds to a complete depletion of electrons on this site.
The pristine onsite gii can be approximated very well for
energies in the linear regime as24

gii ≈ 2√
3πt2

E ln
|E|
3t

− i
|E|√
3t2

, (13)

and this approximation works at energies up to approximately
EF ∼ |t |/2. Equation (12) can be solved in a similar fashion
to that of the single substitutional impurity by observing that
gii is a function of energy only and absorbing it into the usual
γ� term in Eqs. (9) and (10), then following through with the
usual derivation. There is no pole in the upper half plane for
this integrand, so the evaluation method remains unchanged
from the weak impurity case.

Vacancies can be calculated numerically by either inducing
a very large λ value on a site, or by disconnecting the site
from its neighbors. A comparison of this numerical calculation
and the SPA approximation of �n

Vacancy
i (Table I) on sites

within the same sublattice as the impurity is shown for a finite
EF in Fig. 5(a), and excellent agreement is seen between
the two. The general features are similar to those noted for
weaker impurities, namely sign-changing oscillations and a
D−2 decay.

Interestingly, when we set EF = 0 we find a complete
absence of FOs with �n = 0 at all sites, corresponding to
no change in n from the pristine state. This behavior is noted
whether we examine sites on the same or on the opposite
sublattice to the impurity, and is in stark contrast to the case

(a) (b)

FIG. 5. (Color online) (a) Cross section of FOs in �n at EF = 0.2|t | on the black sublattice in the armchair direction due to a vacancy at
site 0 for both numerical (black) and analytic (green) calculations with a logarithmic plot inset showing D−2 decay indicated by the red dashed
line. (b) Log-log plot of |�n1| vs λ at EF = 0 on A (black line) and B (red line) sites shown in the inset schematic. For λ � 1 and λ 
 1, the
amplitude of �n1 becomes very small with a maximum amplitude at λ ≈ 5t , with a positive sign on B and a negative sign on A.
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of weaker scatterers where a nonoscillatory D−3 behavior was
noted. To try to understand this unusual behavior, we examine
the imaginary-axis integral that we need to solve to find �n,
which is of the form

�nVac.
i ∼ Re

∫ ∞

η

dx
g2

i0(EF + ix)

g00(EF + ix)
. (14)

We will see that it is the behavior of the individual GFs along
the imaginary axis which determines the presence or absence
of the carrier density oscillations. At EF = 0 both g00 and
gi0, if i is on the black sublattice, become entirely imaginary
along the integration range. Similarly if i is on the white
sublattice, gi0 is entirely real, ensuring that on both sublattices
the integrand becomes entirely imaginary over the integration
range and �n vanishes since it depends on the real part of the
integrand only.

In the limit of large values of λ the perturbations described
by Eq. (14) will vanish. In Fig. 5(b), we examine the charge
density fluctuations on the site nearest the impurity on both
the same (black curve, A) and opposite (red, dashed curve, B)
sublattice as λ is increased at EF = 0. These sites will have
the largest change in carrier density due to their proximity
to the impurity. We note that λ ≈ 4t (λ ≈ 10t) causes the
largest amplitude in �n on the black (white) sublattice, with
the amplitude of �n decreasing as λ increases further. It should
be emphasized that this disappearance of �n in the λ → ∞
limit occurs only at EF = 0, whereas other energies will show
the familiar D−2 oscillatory pattern.

It is straightforward to evaluate �ρi from the �G
Vacancy
ii

approximation in Table I, where there is a clear asymmetry
between the black and white sublattices at the Dirac point,
as g••

i0 → 0 (with • being the minority sublattice—a vacancy
removes a carbon atom from the sublattice) and g•◦

i0 → +i∞
(◦ is the majority sublattice as it has more carbon atoms).
This results in a zero density of states at EF = 0, similar
to undoped graphene, on the minority sublattice and leads
to divergencies in �ρ on the majority sublattice, which
correspond to the widely predicted midgap resonance states
seen in many previous works.25–27 The bound state above the
main band is also removed to infinity and can be disregarded.

The LDOS peak at the Dirac point on majority sublattice
sites, and the absence of one on minority sublattice sites, is
connected to the phenomenon of vanishing �n in the vacancy
case studied earlier. The introduction of a vacancy deforms the
LDOS at each site, but the number of states on all other lattice
sites is conserved such that −2

π
Im

∫ ∞
−∞ dEρ = 2. Electron-

hole symmetry is preserved for a resonance at exactly E =
0 and thus the LDOS remains symmetric around about the
Dirac point for sites on either sublattice. The carrier density,
being simply the integral of the LDOS up to EF = 0, is thus
unaffected by the vacancy and hence �n = 0 for all other
lattice sites.

D. Adsorbates

An analytic expression for �n
Top
i , the FO induced by a

top-adsorbed impurity [as shown in Fig. 1(d)], can be found
using similar methods to that of a single substitutional atom,
since �G

Top
ii in Table I is analytic in the upper half plane and

there are no additional poles other than those at the Matsubara
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FIG. 6. (Color online) FOs in �n due to top adsorbed OH−

(top row) and H+ (middle row) and to bridge-adsorbed carbon
(bottom panel). The top two cases show both EF = 0 (left panels)
and EF = 0.2|t | (right panels). Numerical data (black) is compared
with the analytic expression (green), with corresponding log-log plots
as insets. The red lines in the insets correspond to D−2 fits for both
EF = 0.2|t | plots [panels (b) and (d)] and D−3 for the other cases. In
panel (c), we note that due to the parametrization of the H+, the SPA
is a poor match to the numerics at EF = 0 away from the asymptotic
limit. The charge density perturbations for a bridge-adsorbed carbon
adatom, shown here as a numerical calculation (black) in the bottom
panel, do not vanish at the Dirac point, unlike a top adsorbed carbon,
due to cross sublattice interferences.

frequencies. However, an approximation of g11 as in Eq. (13)
is required as this GF is beyond the scope of the SPA. This
approximation restricts our results to the linear regime.

We consider two realistic cases of hydroxyl (OH−)
and hydrogen (H+) adsorbates, using the parameters
εOH− = −2.9|t | , τOH− = 2.3|t | for hydroxyl28 and εH+ =
−t/16 , τH+ = 2t for hydrogen.29 The results for these impuri-
ties for EF = 0 and EF = 0.2|t | cases are presented in Fig. 6.
We note an excellent match between the numerical (black
circles) and analytic (green lines) approaches for all cases with
the exception of hydrogen at EF = 0. The parametrization of
hydrogen leads to divergencies at EF = 0 which requires us
to look much further away to see agreement (approx. 100 unit
cells). The proximity of the hydrogen onsite term to the Dirac
point produces a resonance condition at EF = 0, and we see
a clear change in the decay rate in the region close to the
adsorbate in Fig. 6(c), with an eventual D−3 rate far from
the defect. This has been studied recently by Mkhitaryan and
Mishchenko.30 In the case of EF �= 0 a decay rate of D−2 is
found for both adsorbates, with D−3 at the Dirac point, with
proviso, matching the behavior of a substitutional impurity
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which could be expected due to the possibility of modeling the
effect of the adatom through a self-energy term replicating a
substitutional atom.18

We note that altering the onsite energy to εa = EF = 0
forces a resonance condition and confirms previous findings
where the adatom behavior can be similar to that of a
vacancy29 and the �n FOs disappear completely, which we
may expect, for example, in the case of a top adsorbed carbon.
However, carbon prefers a bridge adsorbed configuration31

and due to this bonding type the interference effects from
the two host sites, which are on opposite sublattices, lead
to finite charge density perturbations at the Dirac point.
The presence of FOs in �n for a bridge adsorbed carbon
at EF = 0 can be seen by considering an arbitrary site i

and the corresponding �G
Bridge
ii (Table I). In Sec. III C we

noted that, when considering imaginary axis integration of
off-diagonal GFs at EF = 0, that gab is either entirely real
(for opposite sublattice propagators) or entirely imaginary
(for same sublattice propagators). However from the form
of �G

Bridge
ii it is clear that there will exist both real and

imaginary terms in the integrand for �ni , which was not
the case for top-adsorbed or vacancy impurities. This cross
sublattice interference is key to the nonvanishing �n FOs for
all bridge adsorbed atoms, regardless of parametrization, and
in Fig. 6(e) we show a numerical plot of the familiar D−3

decay in �n at the Dirac point. The usual D−2 oscillations are
recovered with doping.

IV. SUBLATTICE ASYMMETRY IN NITROGEN
DOPED GRAPHENE

Recent experimental works involving substitutional nitro-
gen dopants in graphene have reported a distinct sublattice
asymmetry in their distribution, where the impurities are
discovered to preferentially occupy one of the two sublattices,
instead of being randomly distributed between them. This
effect is noted at both long and short ranges13 and is corrobo-
rated with DFT results.14 A distinct and controllable sublattice
asymmetry in doped graphene presents many interesting pos-
sibilities, among them the possibility of inducing a band gap
by controlling the dopant concentration, an important step in
the development of graphene-based field-effect transistors.15

As remarked in the introduction, Green functions methods
can be extended beyond FOs in �n and �ρ to include other
quantities such as the change in total system energy (�E),
due to a perturbation V̂ , using Eq. (6). The calculation of �E

allows the investigation of favorable impurity configurations,
and we will now apply this method to study substitutional
nitrogen impurities in graphene within a simple tight-binding
model where the nitrogen impurities are characterized19 by
λN = −10 eV.

A. Total energy change

We will first consider the interaction between two identical
substitutional impurities at sites A and B with onsite energies
λ, as in the multiple scattering case discussed previously, so
that the determinant in Eq. (6) becomes det(Î − ĝV̂ ) = (1 −
gAAλ)(1 − gBBλ) − g2

ABλ2. It is possible then to identify two
separate contributions to �E. The first one is associated with

the individual impurities and is independent of the separation
of A and B. Using gAA = gBB , we find

�ES
1 = 2

π
Im

∫
dEf (E) ln(1 − gAAλ) , (15)

where the superscript S refers to the substitutional impurities.
The second contribution is an interaction term dependent on
their separation through the off-diagonal GF gAB ,

�ES
AB = 2

π
Im

∫
dEf (E) ln

(
1 − g2

ABλ2

(1 − gAAλ)2

)
, (16)

such that �E = 2�ES
1 + �ES

AB . It is easy to see that �ES
1

is both separation and configuration independent and takes a
constant value.

To investigate the favorability of different configurations we
define the dimensionless configuration energy function (CEF)
for substitutional impurities

βS(EF ) = �EAB

|2�E1| . (17)

This quantity describes the change in energy of the system
due to the interference between the two impurities, relative to
the total energy change in the system for two noninteracting
(infinitely separated) impurities. Positive values of the CEF
correspond to less favorable configurations whereas negative
values correspond to favorable configurations which decrease
the total energy of the system. By calculating the CEF for
different impurity configurations we can establish which are
energetically favorable and thus more likely to be realized
in experiment. A map of βS(EF = 0) values for a large
number of different configurations is shown in Fig. 7(a). One
impurity is fixed at the red circle corresponding to a site on
the black sublattice. βS is then calculated with the second
impurity located at each of the sites on the map, with the
shading of the triangle surrounding each site corresponding to
the βS value for that configuration. We note that, with the
exception of nearest-neighbor site impurities, a general
trend is seen where the second impurity prefers to locate
on the same sublattice as the initial impurity. This trend
gives rise to the chequerboardlike pattern seen in Fig. 7(a)
where the same sublattice (black) sites are surrounded by
darker triangles, corresponding to lower energy configurations,
than the opposite sublattice (white) sites. It is also clearly
visible in Fig. 7(b) where we plot βS(EF = 0) for the two
sublattices separately for armchair direction separations. We
also note here that the magnitude of βS decays as D−3. This is
the same rate noted for FOs in �n for substitutional impurities
and is easily explained by examining gAB and hence distance
dependence of Eq. (16) to first order in λ, which results in a
similar equation to Eq. (8) for FOs in �n. Indeed, the same
plot for EF �= 0 in Fig. 7(c) reveals an oscillatory behavior
and D−2 decay rate, again matching the �n behavior. Thus
the FOs both in �n for a single substitutional impurity and in
βS for a pair of impurities display the same distance dependent
behavior due to the similar dependence on off-diagonal Green
functions that appears in both quantities. An important point to
note is the discrepancy for the nearest neighbor impurity cases
which Fig. 7(a) shows to be most favorable. In this case the
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FIG. 7. (Color online) (a) A substitutional nitrogen is moved
around a central fixed nitrogen (red) and βS is plotted for each
configuration at EF = 0. (b) Cross-section of plot (a) along the
A-direction with the fixed impurity at D = 0, the black (white)
sublattice sites are indicated by the blue (red dashed) line showing the
D−3 decay profile and the inset schematics show the configuration
in both cases. (c) is a similar plot to (b) but with a Fermi Energy of
EF = 0.2|t |, where we see the presence of Friedel Oscillations and a
decay of D−2. For two pairs of impurities we plot βN2 as a function
of D in plot (d) for EF = 0 and plot (e) for EF = 0.2|t | showing the
same features as for the case of two isolated impurities.

asymptotic behavior extracted from our analytic expressions
is evidently not yet valid. However we should also expect that
our parametrization approach is not adequate to describe such
impurities, as it treats the nitrogen impurities separately and
neglects, for example, the additional overlap matrix elements
required for two neighboring nitrogen impurities.

Furthermore, we note that by utilizing an alternative
parametrization for the nitrogen impurity,19 λ = −4 eV, the
inconsistent local behavior is removed and same sublattice
configurations are more favorable everywhere. This confirms
the sensitivity of results for local sites to the impurity
parametrization. Another point to note is that the introduction
of nitrogen impurities into graphene increases the total number
of electrons in the system and leads to a shift in the Fermi
energy. Thus for higher concentrations of nitrogen, the range
for which same-sublattice doping is preferred is reduced due
to the presence of the βS oscillations in Fig. 7(c). However,
the strength of the preference within this range may be

increased by the slower rate of decay predicted for doped
graphene.

B. Impurity segregation

Recent experimental observations, corroborated by DFT
calculations, seem to suggest that two nitrogen impurities in
close proximity to each other prefer to occupy sites on the same
sublattice in a quasineighboring configuration13,14 as shown in
Fig. 4 (left, inset), hereon referred to as N••

2 configuration.
This configuration is preferred over the nearest-neighbor
configuration N•◦

2 seen in Fig. 4 (right, inset) which was
calculated as being the most favorable configuration in the
simple model above. Despite the limitations of the simple
model for small separations, we note that the experimentally
observed configuration fits the general trend of small separa-
tion, same sublattice configurations being the most favorable
that the asymptotic behavior of our model suggests.

The real advantage to our FO-based approach to studying
such systems becomes clear when we consider multiple N••

2
type impurities. Experimental evidence suggests that not only
do pairs of nitrogen impurities prefer the N••

2 to the N•◦
2

configuration, but that a pair of N••
2 -like impurities prefer to

locate on the same sublattice. In other words, that two N••
2 or

two N◦◦
2 impurities are formed in preference to one of each.

This behavior leads to domains in nitrogen-doped graphene
with a large sublattice asymmetric doping. Such behavior
has been predicted to lead to interesting and useful transport
properties.15 Numerical investigation of such systems using
DFT calculations is limited to small separations which makes
it difficult to explore the behavior which emerges in more
highly-doped larger scale systems. By extending the model
discussed for single substitutional N dopants in the previous
section, we can use the Lloyd model to investigate these types
of systems. In this setup, the individual impurities are now
N••

2 or N◦◦
2 defects, shown as insets in Fig. 7(d). We consider

a N••
2 -type impurity at location A and introduce a second N••

2
or N◦◦

2 impurity a distance D away at site B. We calculate the
CEF for such a configuration analogously to Eq. (17),

βN2(EF ,D) = �EN2
AB∣∣2�EN2
1

∣∣ , (18)

where now �EN2
1 is the total change in energy in introducing

a single N••
2 or N◦◦

2 impurity. This quantity is plotted for the
case when the second impurity is also a N••

2 (blue curve)
and when it is a N◦◦

2 (red dashed curve) in Fig. 7(d). We note
that, similar to the substitutional impurity case, same sublattice
impurity configurations are preferential.

To benchmark our calculations, it is worth comparing our
�EN2

AB results to the DFT calculation performed in Lv et al.32

for a single value of separation. In this work, calculations were
performed for both two N••

2 -type impurities and for a config-
uration with one N••

2 and one N◦◦
2 . In both cases the impurity

pairs had a separation of approximately D = 7. An energy
difference of 14 meV is reported using the DFT calculation32

compared to 2.3 meV for the tight-binding model. In both cases
the double N••

2 configuration was energetically favorable. The
numerical discrepancy between the results is to be expected
due to the overly simple parametrization of the N••

2 impurity
employed in the tight-binding model. However, the qualitative
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results for this model are not strongly affected by the local
impurity parametrization, indicating also that the long-range
sublattice ordered doping behavior may not be unique to
nitrogen. We emphasize that the same-sublattice configuration
preference is noted for all separations in our model, explaining
the long-ranged ordering seen in experiment.13,14

In a similar manner to that discussed for substitutional
impurities, a finite concentration of N••

2 impurities shifts the
Fermi energy away from the Dirac point and introduces oscilla-
tions in βN2(D). These oscillations, seen in Fig. 7(e), produce
regions away from the initial N••

2 impurity where a N◦◦
2 is

more favorable than a second N••
2 impurity. However, small in-

creases in EF would preserve the same sublattice preference in
local regions. This suggests that larger scaled N-doped systems
may have alternating domains where each of the sublattices is
dominant, and this prediction is consistent with experimental
observations.14 An extension of the model discussed here to
include a more accurate parametrization of the individual N••

2
impurities would provide a transparent and computationally
efficient method to explore the formation and size of such do-
mains, and to determine their dependence on the concentration
of N dopants and the resultant Fermi energy shift.

V. CONCLUSIONS

In this work we have derived analytic approximations for
change in carrier density (�n) and local density of states (�ρ)
in the high symmetry directions in graphene by employing a
stationary phase approximation of the lattice Green functions.
We obtain excellent agreement with numerical calculations
for single and double substitutional atoms, vacancies, top
adsorbed, and bridge adsorbed impurities in the long-range
limit, finding �n decays with distance (D) as D−2 for
all impurities for EF �= 0. At the Dirac point, due to the
disappearing density of states, we find the Friedel oscillations
in �n away from substitutional, top and bridge adsorbed

impurities decay with as D−3, but that in the case of vacancies
and a resonant top adsorbed carbon �n is unchanged from the
pristine case on all lattice sites due to the symmetry of electron
and hole states in the LDOS profile around the Dirac point.
In the case of top adsorbed carbon, which is less energetically
favored than the more naturally occurring bridge adsorbed
carbon, the cross sublattice interference present in the bonding
arrangement ensures �n does not vanish.

Furthermore by expressing the total change in system
energy due to the introduction of impurities through the lattice
Green functions we investigated how a sublattice asymmetry
of both single and pairs of nitrogen dopants in graphene
arises. We demonstrate that the dopant configuration energy is
minimized where they share the same sublattice, a result which
agrees with recent experiments13–15 where such a distinct
sublattice preference was found.

As well as appearing in the carrier density, formation energy
and LDOS, as shown in this work, similar oscillations can
appear in the spin polarization of atomic sites due to the
presence of a magnetic impurity12,33 and is analagous to some
features seen in the RKKY. Our method can be further extended
by applying it to strained graphene, as has been done with the
SPA approach to the RKKY,34 and the behavior of FOs in such
a system has been studied theoretically only very recently5

where a change in decay behavior and sublattice asymmetry
of the FOs due to the merging of the two inequivalent Dirac
points in the Brillouin zone caused by inducing strain was
found.
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