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We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA)
for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension
of the random phase approximation (RPA) derived from time-dependent density functional theory and the
adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown
to preserve the accurate description of dispersive interactions from RPA while significantly improving the
description of short-range correlation in molecules, insulators, and metals. For molecular atomization energies,
the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE)
functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies
of solids. For transition metals, the inclusion of full shell semicore states is found to be crucial for both RPA and
rALDA calculations and can improve the cohesive energies by up to 0.4 eV. Finally, we discuss straightforward

generalizations of the method, which might improve results even further.
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I. INTRODUCTION

The adiabatic-connection fluctuation-dissipation theorem
(ACFDT) provides an exact representation of the electronic
correlation energy in term of the interacting density response
function, within density functional theory (DFT).'2 A ma-
jor advantage of this method, is that it naturally accounts
for dispersive interactions through the nonlocality of the
response function. Furthermore, in contrast to semilocal
approximations, the ACFDT correlation energy is naturally
combined with the exact exchange energy and does not rely
on error cancellation between the exchange and correlation
contributions to the total energy. The accuracy of correlation
energies within the ACFDT then depends on the quality of the
interacting response function that needs to be approximated.

The most famous approximation for the response func-
tion is the random phase approximation (RPA), which is
obtained when a noninteracting approximation is used for
the irreducible polarizability. For metallic systems, the RPA
provides a qualitative account of screening in and cures the
pathological divergence of second-order perturbation theory
for the homogeneous electron gas. In 2001, Furche® applied
RPA and ACFDT to obtain the dissociation energies of small
molecules and found that the results were slightly worse than
those obtained with a generalized gradient approximation®
(GGA) with a systematic tendency to underbind. It was also
shown that RPA can account for strong static correlation
and correctly reproduces the dissociation limit of the N
molecule. Following this, RPA has been applied to calculate
cohesive energies of solids®”’ and again, RPA performs
significantly worse than GGA with a systematic tendency
to underbind. In contrast, RPA produces excellent results for
van der Waals bonded systems like graphite,® which is very
poorly described by semilocal approximations. In addition, for
graphene adsorbed on metal surfaces, where both covalent and
dispersive interactions are equally important, the RPA seems
to be the only nonfitted scheme capable of describing the
potential energy curves correctly.51°
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By now, it is well established that RPA provides a reliable
account of van der Waals bonded systems but systematically
underestimates the strength of covalent and ionic bonds.'"!?
Furthermore, the absolute correlation energies obtained with
RPA are severely underestimated and dissociation energies
benefit from huge error cancellations. In particular, for
one-electron systems, RPA gives rise to a substantial nega-
tive correlation energy. This large self-correlation error can
be remedied by subtracting the local RPA error obtained
from the homogeneous electron gas,'? but unfortunately, the
procedure does not improve upon dissociation energies of
molecules and solids.>> A more sophisticated approach is to
add a second-order screened exchange (SOSEX) contribution
to the correlation energy, which exactly cancels the self-
correlation energy for one-electron systems. This approach has
been shown to improve dissociation energies of molecules!?
and cohesive energies of solids'# but is significantly more
computationally demanding than RPA. In addition, the SOSEX
term in the correlation energy destroys the good description of
static correlation in RPA and produces the wrong dissociation
limit of small molecules.'?

In a different line of development, time-dependent density
functional theory!> (TDDFT) provides a systematic way
to improve the RPA response function. Here the response
function can be expressed in terms of a frequency-dependent
nonlocal exchange-correlation kernel and RPA is obtained
when the kernel is neglected. A rather advanced approach
in this direction is the inclusion of the frequency-dependent
exact exchange kernel, which has been shown to produce
very accurate dissociation energies of small molecules'®!’
and conserve the accurate description of static correlation
characteristic of RPA.'® While this method is considerably
more involved than RPA, it provides evidence that accurate
correlation energies may be obtained from TDDFT and
ACFDT with a good approximation for the exchange kernel.
In Ref. 19, the correlation energy of the homogeneous electron
gas was evaluated using different approximations for the
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exchange-correlation kernel and the results indicated that the
frequency dependence of the kernel is of minor importance,
while the nonlocality of the kernel is crucial. Moreover,
it has been shown by Furche and van Voorhis® that any
local approximation for the kernel produces a correlation
hole, which diverges at the origin. The resulting correlation
energies then often become worse than those obtained with
RPA (one exception to this is the local energy-optimized
kernel of Ref. 21). Whereas exchange-correlation kernels have
traditionally been derived to produce accurate excited state
properties, there is now a considerable interest in obtaining
exchange-correlation kernels suited for accurate ground state
correlation energies.”'2* In this respect, it is interesting to
note that the optical properties of electronic systems are ill
described with local approximations for the kernel due to
wrong behavior at ¢ — 0, while the failure for total energy
calculations originate from the bad behavior in the limit
q — oo (see discussion below).

In this paper, we present a parameter-free renormalized
adiabatic exchange kernel. The renormalization introduces
nonlocality in the kernel and provides an accurate description
of the correlation hole at short distances, which gives rise
to a better description of short-range correlation compared
to RPA. We note that the philosophy of the renormalization is
similar to the smooth cutoff introduced in the energy-optimized
kernel of Ref. 22. However, in contrast to that kernel, the
present kernel does not contain any fitted parameters. The
kernel has previously been shown to improve upon RPA for
absolute correlation energies and dissociation energies of small
molecules,”* while the computational load is comparable to
RPA. Here we describe the theory and implementation in detail
and assess the performance for cohesive energies of solids,
static correlation, and van der Waals interactions.

II. THEORY

Using the adiabatic connection and fluctuation-dissipation
theorem (ACFDT), the exchange-correlation energy can be
written as

fl [oo dw ~ Ay
Exe=— | di —Tr{v[A278(w) + x*(w)]}, (1)
0 0o 2m

where A(r,r’) = n(r)é(r — r’) and v is the Coulomb interac-
tion. Here, n(r) is the density, which by definition is constant
along the adiabatic connection and x*(iw) is the interacting
response function of a system with v — Av evaluated at
imaginary frequencies. It is standard practice to divide Ejy.
into an exchange part E, obtained by setting A = 0 in the
integrand and a correlation part E., which is the remainder.
One then obtains

E, =— / T ase) + Sl @)
0o 2w

1 00
E = / i / LTl i) — XS], G)
0 0 T

where x®5(iw) is the response function of the noninteracting
Kohn-Sham system. A major advantage of this separation is
that the exchange energy only depends on the occupied bands
and can be converged separately with respect to k-points plane
wave cutoff, etc. One can then focus on the correlation energy

PHYSICAL REVIEW B 88, 115131 (2013)

E., which can be calculated once an approximation for x* has
been given.

To obtain x*, we turn to time-dependent density functional
theory, where it is easy to show that the interacting response
function satisfies the Dyson equation

@) = x5 @) + xS @f [ + L] @) @

Here, the exchange-correlation kernel f7(w) is the temporal
Fourier transform of the functional derivative of the time-
dependent exchange-correlation potential at coupling strength
A. All the complicated correlation effects contained in x*(w)
has been transferred into f7.(w), which needs to be approx-
imated. However, even if X*C(a)) is neglected all together,
one still obtains a nontrivial approximation for x*(w) due
to the Coulomb interaction term. This is the random phase
approximation (RPA).

To obtain correlation energies beyond the random phase
approximation, we will include an approximation for f2(w)
in Eq. (4). In general, one can obtain the exchange-correlation
kernel along the adiabatic connection from the scaling
properties'’

felnl(r,r',0) = A2 fi [ 100, AF w0 /27), Q)

n' = 173nr/n), (6)

and it will thus be sufficient to consider the case of A = 1. Due
to the first-order nature of exchange, any properly derived pure
exchange kernel should have the property that f[n](r,r',w) =
Afy[n](r,r’,w). For a pure exchange kernel, the coupling
constant integration can thus be carried out resulting in

_ o da) —1,. KS,-: .
Eo= [ Sotlufs kot = x5S Go) fustio)
0 T

+ux*SGiw)}, 7

where fy.(iw) = v+ f:(iw). However, the inversion of fy,
turns out to cause numerical problems, and for ab initio
applications in this manuscript, we will perform the coupling
constant integration numerically.

A. Adiabatic local density approximation

A simple and natural choice is the adiabatic local density
approximation (ALDA) given in the frequency domain by

S PAnlrr) = 8(r — 1) [ PA ()], ®)
ALDA _ a? HEG
Jre In(m)] = @(m?xc ) pn(e)’ )
where ¢HEG is the exchange-correlation energy per electron

in the homogeneous electron gas. The approximation is in a
certain sense similar to LDA in static DFT, but in contrast to
LDA, the ALDA is not exact for the homogeneous electron
gas. In particular, the ALDA kernel becomes a (density
dependent) constant in the homogeneous electron gas, while
the true kernel should depend on both frequencies and position
differences. This means that ALDA can violate a number
of exact conditions. For example, it is well known that the
kernel in Fourier space should behave as f,. ~ g2 forg — 0
and fy. ~ g% for ¢ — 00, which are obviously violated
by any local kernel. Whereas the first of these conditions
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FIG. 1. (Color online) The coupling constant averaged correla-
tion hole in g space for the homogeneous electrons gas. Left: r, = 1.
Right: r, = 10. The different curves refer to the exact (black), RPA
(blue), and ALDA (green) results. The positive slowly decaying tail
of ALDA is evident at large g. The rALDAx is obtained by truncating

AAPAX () at its zero point at 2k .

is very important for the description of optical excitations
within TDDFT, it is the second condition that makes any
local approximation fy. useless for total energy calculations
in the ACFDT framework. The reason is that the trace in
Eq. (3) becomes an integral over all q and an inaccurate
description of the response function at large ¢, can deteriorate
the correlation energy completely. Equivalently, the constant
behavior of fi. at large g renders the pair correlation function
in real-space divergent at the origin. This divergence is
integrable, but gives rise to severe convergence problems for
ab initio applications.?”

To show this in more detail, we have plotted the correlation
hole of the homogeneous electron gas in the top row of
Fig. 1 using RPA and the exchange part of the ALDA
(ALDA x) approximation for fy. and compare with an analytic
representation.?® The analytic representation has been shown
to agree with Monte Carlo simulations and here we will regard
this as the exact correlation hole. The correlation energy per
electron is directly related to the integral of the coupling
constant averaged correlation hole 7,

E. = 27t/ drrin.(r) = l/ dgn.(q). (10)
0 T Jo

It is most instructive to look at the correlation hole in ¢
space. It is seen that the RPA hole decays too slowly and
since the correlation energy is proportional to the integral
of the correlation hole, it is clear that RPA will overestimate
the magnitude of the correlation energy. In fact, the correlation
energy per electron becomes ~0.5 eV too negative for a
wide range of densities, whereas the relative error increases
from 25% at r, =1 to 50% at r, = 20.>* ALDAy, on the
other hand, seems to reproduce the g-space representation
of the correlation hole much better. However, at large ¢, the
correlation hole acquires a slowly decaying positive tail, and
as a consequence, the correlation energy becomes too large
by ~0.3 eV per electron. Furthermore, the slowly decaying
tail introduces a divergence at the origin in the real space
correlation hole. We note that the results change very little if
we include the full ALDA (exchange + correlation) kernel.
If we are mostly concerned with total correlation energies,
we may observe that the exact correlation hole picks up most
of its weight between zero and 2kr where i2-PAx(g) has a
zero point. The correlation energy is then approximated by

E, x fOZkF iAPAY (g)dg and we have previously shown that
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FIG. 2. (Color online) The coupling constant averaged corre-
lation hole in real-space for the homogeneous electrons gas. Left
column: r; = 1. Right column: r; = 10. The bottom row shows the
bare correlation hole in real space, where the ALDA x approximation
is seen to diverge at the origin. The rALDA x is obtained by truncating
AAMPAX () at 2k [the zero point of 72LPAX (¢)] and is seen to produce
a much better approximation than both RPA and ALDAy. The top
row, shows the correlation hole weighted by r, which is the quantity
one would integrate to get the correlation energy.

this procedure yields correlation energies within 30 meV of
the exact value for a wide range of densities.>* We can now
proceed to define a new real space correlation hole obtained
by Fourier transforming #2PAx(g) truncated at 2k and we
will refer to this as rALDA . From Fig. 2, it is evident that
this procedure removes the divergence at the origin and gives
rise to a correlation hole, which comprises a much better
short-range approximation than either RPA or ALDAy. At the
same time, the rALDA x correlation hole retains the accurate
long-range behavior of the ALDAy correlation hole, which
is less accurately described in RPA. In Fig. 2, we also show
the correlation hole weighted by r, which is the quantity that
should be integrated to obtain the correlation energy.

B. Renormalized adiabatic local density approximation

For the homogeneous electron gas, the cutoff at 2kr in
iAPAY(g) can be imposed by using the Hartree-exchange
kernel

Fine M nl(@) = 62kr — @) fi [nl. (1n
Fourier transforming this expression yields

FEAPA () = fIALPA[)(r) + 0" [n](r),

ZtALDA _ foLDA[”] .
fr [n](r) = W[sm@kpr) — 2kgr cosRkgr)],
2kpr o3
Vi) = 2 / i, (12)
0

where kr = (372n)!/3 and we have suppressed the ALDA
exchange (X) index. We will refer to this kernel as the
renormalized adiabatic local density approximation (rALDA).
The cutoff in g space is translated into a density dependent
width of the § function in Eq. (8), which gives rise to a
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FIG. 3. (Color online) (Left) The renormalized exchange kernel
fXTALDA [7](r). The kernel has a width which is determined by the
density. As n — oo (ry, — 0), the width decreases and the kernel
approaches the bare exchange kernel (8). (Right) The renormalized
Hartree kernel v/ *"™PA[n](r). The kernel is finite at the origin and
approaches the bare Coulomb kernel for large r.

nonlocal exchange-correlation kernel. Similarly, the renormal-
ized Hartree kernel acquires a density dependence through the
cutoff, but approaches the bare Hartree kernel in the limit of
r — oo. The kernels are shown in Fig. 3. Interestingly, both
the renormalized Hartree kernel and exchange kernel become
finite at the origin giving

. 4k g Sk%r2
V' [nl(r - 0) = — — , (13)
O
4k} 32k§r2

NP — 0) = (P " 572 )f*ALDA["]' o

This property becomes extremely convenient when the kernel
is evaluated in real space.

It is customary to include an exchange-correlation kernel
on top of the exact Hartree kernel and we thus define the
renormalized adiabatic local density approximation by the
exchange kernel

f;ALDA[n](r) — ]?x'rALDA[n](r) + 0" [n](r) —v(@r). (15)

This representation is also more useful for ab initio applica-
tions to solid state systems since it is difficult to converge
the long-range tail of v"[n](r). In contrast, for r — oo,
[v"[n](r) — v(r)] — sin(2kpr)/r, which rapidly averages to
zero. Since fIALPA[n](r) decays as 1/r3 for r — oo, it is
much easier to converge the numerical Fourier transform of
Eq. (15) with respect to sampled unit cells than Eq. (12).

1. Spin

A major advantage of the RPA for ab initio calculations of
total correlation energies, is the fact the spin-polarized systems
can be treated by simply making the substitution x° — X? +
x| in Eq. (4). This is easily shown by using the fact that frx
is independent of spin in RPA, but it no longer holds when a
spin-dependent exchange-correlation kernel is used.

For exact exchange, one has

E.[2n;] + E[2n,]
2 bl

Ei[ny,n] = (16)

which translates into

fx,aa’[nTan¢] = 2fx[2na]800’- a7

Here, functionals of two arguments are the spin-polarized
versions of the spin-paired functionals with one argument.
It is straightforward to impose this spin-scaling on fILPA a5
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well, however, we find that this renders the correlation energy
very difficult to converge, since the spin-polarized version
of the kernel will inherit part of the convergence problems
from ALDA. This is due to the fact that the spin-diagonal
components of the Hartree-exchange kernel become fi-DA =
2 fi[2ns] 4+ 20" [2n,] — v and the additional bare Coulomb
interaction v destroys the local cancellation of the correlation
hole resulting from the spin-density 7, .

To obtain a more useful spin-polarized version of the
rALDA kernel, we first consider the Dyson equation with
explicit spin dependence:

Xoo' = X800 + D XSS fI 1y Koo (18)

”

o

where we used that the noninteracting response function is
diagonal in spin. For a spin-paired system, we get the constraint
that

1
72 fosln/2n/2) = filn). (19)

Clearly, this is satisfied if we impose the exact condition (17).
Due to the convergence problems mentioned above, we relax
Eq. (17) and instead use

FAPALL 1) = 2 PA s+ 0 0] — v, (20)

x,00'

with n = n, + n, . This satisfies Eq. (19) and ensures that
the renormalized bare Coulomb interaction is replaced by
the renormalized kernel when we calculate the full Hartree-
exchange kernel. The spin structure is then very similar to that
of the ALDA Hartree exchange, the only difference being
that we have replaced the bare Coulomb interaction with
the renormalized Coulomb interaction and the ALDA kernel
has been replaced by f™IPA, where both are evaluated on
the total density. We note that this choice is by no means
unique and in our previous work?* we used the expression

xr:/?fI;PA = zf;ALDA[n(r + na’]s(ra’ + v’ [na + n(r/] —v. How-
ever, we have found that Eq. (20) gives better results for
atomization energies and we have used that approximation
in the present work.

2. Inhomogeneous systems

It is straightforward to generalize the rALDA kernel
Eq. (12) to inhomogeneous systems by taking r — |r — r'|
and kp — [37%i(r,r)]'/3. However, we are forced to in-
troduce a two-point density 7i(r,r’), which is not uniquely
given by the present method. The only requirement is that
Jfxe(r,r’) = fy(r',r), which translates into 7i(r,r’) = 7i(r’,r).
In the following, we will use two different flavors of the
two-point density:

iy (rr) = M Q1)
and
(et = n <r J; ﬂ). (22)

The first of these choices is a simple average of the densities.
In our view, this is the most natural choice since the two-point
density should give the width of the kernel, if we regard
this as a pure function of |r — r’|. Thus if r and r’ belong
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to two well separated systems, the coupling originating from
the kernel is determined by the width, which should be given
by the average value of the densities at r and r’. From the
Dyson equation (4), it is clear that the Hartree-exchange-
correlation kernel fyx(r,r’) provides a coupling between
the noninteracting density response functions x*S(r;,r) and
x85(r',r,) and the kernel thus naturally involves the densities
in those points. In the following, we will regard this as
the physical choice and implicitly refer to this two-point
density unless otherwise stated. In contrast, 7i,(r,r’) is the
density at the average position, which becomes zero if r and
r’ belong to two well separated systems. This version of
the two-point density is therefore not expected to describe
van der Waals interactions correctly, but it has the great
advantage that the kernel becomes a function of r_ = |r — /|
andr. = (r + r’)/2, which simplifies calculations in periodic
systems. Nevertheless, a priori, we would not expect 7i,(r,r’)
to work well in very inhomogeneous systems.

C. Plane-wave implementation

The renormalized ALDA functional has been implemented
in the DFT code GPAW,?"-?® which uses the projector augmented
wave (PAW) method.?’ The response function is calculated in
a plane-wave basis set as described in Refs. 6 and 30. We were
not able to apply the analytic coupling constant integration
Eq. (7) due to near singular behavior of f, g}LDA. Instead, we
solve the Dyson equation (4) for eight Gauss-Legendre lambda
points and perform the coupling constant integration numeri-
cally. The frequency integration is performed using 16 Gauss-
Legendre points with the highest point situated at 800 eV.

The kernel Eq. (15) with a general two-point density like
Eq. (21) is only invariant under simultaneous lattice translation
inr and r'. Its plane-wave representation takes the form

1 .
P [y .
66 NV Jyv NV

rALDA i(G'+q)r
x fi

(r,r')e
1 ) .

_ / dl‘/ dr/esz-rf(q; l’,l’,)el(J -r , (23)
Vi %

where G and G’ are reciprocal lattice vectors, N is the number
of sampled unit cells, q belongs to the first Brillouin zone, and

f(q; l‘,l‘,) — % IXJ: etq.R,-_,efzq-(rfr’)erALDA(r’r/ + Rij)- (24)
Here, we have introduced the lattice point difference R;; =
R; — R; and used that each of the N sampled unit cell integrals
in Eq. (23) can be transferred into a single unit cell by letting
r—>r+R;. We also used that firMPA(r +R;,r' + R;) =
FIALDPA(r ¢ + R;;). The function f(q;r,r) is thus periodic in
both r and r’ and f&°*(q) should be converged by sampling
a sufficient number of lattice points. For isolated atoms and
molecules, one should only use a single term in the sum, but
make sure that the calculation is converged with respect to unit
cell size. For solids, a consistent approach is to sample a set
of unit cells, which matches the sampled k-point grid. Since
the sum in Eq. (24) only involves lattice point differences, a
lot of terms are equal and we can reduce the double sum over
lattice points to a sum over lattice point differences, where each
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term is weighted by the number of times that particular lattice
point difference appears. Despite this reduction, the evaluation
of the rALDA kernel for periodic systems still represents a
major computational load, since we have to calculate the full
two-point function finEPA(r,r’ + R;;) for each lattice point
difference.

1. Average coordinates

One way to circumvent the lattice point sampling for
periodic systems is to replace the general two-point density
(21) by the density at the average position (22). The rALDA
kernel then becomes periodic in the average position and
can be written as f ;I‘A;(I;DA[n(rJr)](r_), where r_ =r —r’ and
ry = (r +r')/2. Inthe limit of N — o0, the Fourier transform

in N unit cells then becomes>®

1
f;ALDA(G,G/,q) — _/ dl‘/ dr/
NV NV NV

% e—i(l'(r—r’)e—iG-rf;ALDA(r,l./)eiG/-r’

RS
= — dr_ | dr
V Inv v "

X e—iq-r,e—iGJr-n f)CrALDA(r_’r+)e—iG,-r,

_ 1 / dre G+ fALPA[L(1)]h
Vi)
X (2kp[n(r)] — |q + G-, (25)

where we defined Gy =G — G’ and G_ = (G + G')/2. In
the last line, we used the Fourier transform of the step function
from Eq. (12). The expression is thus very similar to the Fourier
transform of the ALDA kernel except that it involves a density
dependent step function.

III. RESULTS

The most striking improvement of the rALDA functional
compared to RPA is the accurate description of absolute
correlation energies. The main motivation for the method is the
accurate representation of the correlation energy of the HEG
and in Ref. 24, it was shown that this is also true for simple
inhomogeneous systems. For example, the RPA correlation
energy of a Hydrogen atom is —0.57 eV, whereas rALDA
gives —0.02 eV. Note that this value differs from our previous
work,?* due to a different treatment of spin in the present work.
Similarly for the H, molecule, RPA and rALDA yield absolute
correlation energies of —2.2 and —1.2 eV respectively, which
should be compared to the exact value of —1.1 eV.

‘We have previously demonstrated that the rALDA method
also significantly improves the accuracy of molecular atom-
ization energies compared to RPA.?* In our previous work, the
rALDA kernel was evaluated using the pseudodensity. In this
work, the rALDA kernel is based on the all-electron density
and is thus exactly represented within the PAW formalism.

In this section, we will begin by stating the computational
details. We then present results for atomization energies
of molecules and show that the rALDA kernel accurately
describes strong static correlation in the atomic limit of H;
dissociation. Cohesive energies of solids are then discussed
and the two methods presented in Eqgs. (21) and (22) are
compared. We then present Cg coefficients of eight atoms
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evaluated with LDA, RPA, and rALDA. Finally, we demon-
strate that the rALDA method becomes very similar to RPA in
the description of long-range correlation, which we exemplify
by the dissociation of a graphene bilayer and the binding
energy of four molecular dimers.

A. Computational details

The calculation of RPA and rALDA correlation energies
are performed in three steps. First a standard LDA calculation
is carried out in a plane wave basis. The full plane wave Kohn-
Sham Hamiltonian is diagonalized to obtain all unoccupied
electronic states and eigenvalues. Finally, we choose a cutoff
energy and calculate the Kohn-Sham response where we put
the number of unoccupied bands equal to the number of
plane waves defined by the cutoff and evaluate the correlation
energy according to Egs. (3) and (4). The calculated correlation
energies are added to nonselfconsistent Hartree-Fock energies
evaluated on the same orbitals as the correlation energy. In
general, we have found very little dependence on the input
orbitals for Hartree-Fock energies.

All LDA and PBE calculations were performed with a
600 eV cutoff for the wave functions. For RPA and rALDA
energies, we use an additional cutoff, which, in general,
is smaller than the wave-function cutoff and defines the
number of plane wave used to represent the response function.
The calculations are challenging to converge with respect to
this cutoff energy and for most calculations we have used
an extrapolation scheme to obtain converged results. For
sufficiently high cutoff energies, the correlation energy is
found to scale as®!

EC(Ecut) =E° + (26)

3720
cut
where E¢ is the converged result. For most considered systems,
the extrapolation was found to be very accurate when the cutoff
is increased beyond 300 eV. Typically, the converged results
are obtained by extrapolating correlation energies in the range
250-400 eV. When comparing systems with similar electronic
structure in the same unit cell, energy differences converge
much faster and in the case of a bilayer graphene we used a
fixed cutoff of 200 eV to calculate the potential energy curve.

The rALDA kernel is evaluated on a real-space grid where
the grid spacing is set to h = m/+/4 E.y. We have checked that
rALDA results are converged with respect to this grid spacing
which is always on the order ~0.16 A when the wave-function
cutoff energy is 600 eV (see Appendix).

All calculations were performed on experimental geome-
tries corrected for zero-point anharmonic effects. For the small
atoms and molecules, the simulation was carried out in a
periodic supercell where the shortest distance to an atom in
a neighboring cell is 6 A. For Si, Ge, Mg, Li, Al, Pd, Rh,
Cu, and Ag, we used 8 A and for Na we used 10 A. All
solids were simulated with a 12 x 12 x 12 gamma-centered
k-point sampling for the correlation energy calculations and a
Fermi-Dirac smearing of 0.01 eV. The Hartree-Fock energies
were found to converge much slower with respect to k-point
sampling and we typically used 18-22 k points in each
direction for this. For bilayer graphene, we used a k-point
sampling of 16 x 16 for both Hartree-Fock and correlation
energies.
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TABLE 1. Atomization energies of diatomic molecules. The
ALDA values are taken from Ref. 20 and experimental values
(corrected for zero point vibrational energies) are taken from Ref. 32.
All numbers are in kcal/mol. The bottom line shows the mean
absolute error for this small test set.

PBE RPA@PBE LDA RPA@LDA ALDA rALDA Exp.

H, 105 109 113 109 110 111 109
N, 244 224 268 225 229 231 228
0, 144 112 174 103 155 118 120
F, 53 30 78 24 74 37 38

CO 269 242 299 234 287 256 259
HF 142 130 161 127 157 139 141
H,O0 234 222 264 218 249 229 233
CH, 415 383 460 374 421 406 405
CH; 420 404 462 400 426 420 419
NH; 302 290 337 291 296 297 297

MAE 8.7 10.3 36.7 14.4 15.7 1.9

B. Cohesive energies of molecules and solids
1. Atomization energies of molecules

In Table I, we display the atomization energies of a small
set of molecules evaluated with the rfALDA functional and
compare with LDA, PBE, and RPA results. Some of the results
differ slightly from previously published results** due to the
use of all-electron densities instead of pseudodensities and
due to a different treatment of spin-polarized systems. The
accuracy of the rALDA is increased by a factor of 5 and 7 com-
pared to RPA@PBE and RPA@LDA, respectively, and a factor
of four compared to PBE. The deviations from experimental
values are displayed in Fig. 4. The PBE functional has a clear
tendency to overestimate atomization energies, whereas RPA
consistently underestimates atomization energies. The rALDA
gives accurate results with no clear tendency to underbind
or overbind. We also note that rALDA appears to be more
accurate than RPA + SOSEX,'%!4 which yields a MAE of
5.8 kcal/mol for small molecules. This value was obtained

LDA

H,y | oo
N || PBE
2[|a—a RPA@LDA
0, ||== RPA@PBE
&6 rALDA
Byl
CO¢
HF}
H,0
CQ H2 [
CH,|
NH, ¢ ‘ ‘ ‘ ,
-60 —-40 -20 0 20 40 60

E-F

exp

[kcal/mol]

FIG. 4. (Color online) Atomization energies of ten small
molecules evaluated with LDA, PBE, RPA@PBE, RPA@LDA, and
rALDA.
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FIG. 5. (Color online) Dissociation curves of the H, molecule
calculated with different functionals. The dashed line shows the
energy of two isolated Hydrogen atoms (—1 Hartree). Each curve
has been obtained by spline interpolation of 12 data points.

from the entire G2-1 test set, however, the MAE of RPA @PBE
evaluated on G2-1 agree perfectly with the value stated in Table
I'and our small test set thus seems to give a representative value
for the MAE of small molecules.

Itis interesting to note that the performances of RPA@LDA
is significantly worse than RPA@PBE. This is most likely due
to a better description of KS eigenstates within PBE than
within LDA. Thus, for a consistent comparison between RPA
and rALDA, one should use RPA@LDA. When this is done,
rALDA is then seen to improve the errors in atomization
energies by nearly a factor of 7. Due to the bad performance
of RPA@LDA, it is tempting to speculate if rALDA would
perform even better if evaluated on an improved set of KS
eigenstates, for example, those obtained with PBE. However,
using an exchange correlation kernel, which is not derived
from the orbitals on which it is applied is inconsistent and may
yield numerical problems.?’ In this case, one would therefore
need to apply a renormalized adiabatic PBE kernel in order to
follow this path.

2. Static correlation

A surprising and appealing property of RPA is the good
description of strong static correlation involved in the atomic
limit of molecular dissociation for closed shell molecules.?
However, within RPA molecular dissociation is correctly
reproduced only if one corrects for the wrong RPA energy
of the isolated atoms. This is due to the huge underestimation
of the correlation energy in RPA.

This error is largely eliminated in rALDA and the atomic
limit of molecular dissociation is well reproduced in rALDA
without the need for any corrections. This is shown in Fig. 5
for the case of H,. The rALDA dissociation curve approaches
the rALDA energy of two isolated Hydrogen atoms (0.04 eV
below one Hartree), whereas the RPA curve approached the
RPA energy of two isolated Hydrogen atoms (1.2 eV below one
Hartree). If these energies are used as references, the RPA and
rALDA energy curves become practically indistinguishable.

It should be noted that like RPA, the rALDA energy
curve exhibits a spurious maximum at ~3.5 A. Due to our
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plane-wave implementation, simulations in large unit cells
become prohibitly expensive, and we were not able to calculate
the energy all the way to the dissociation limit. The maximum
is therefore only barely observable but distinct at closer
inspection. In addition, from the present calculations, it is
not possible to conclude directly that the rALDA energy in
the dissociation limit will approach the rALDA energy of two
isolated hydrogen atoms. However, the long-range correlation
energy of rALDA approaches that of RPA in the dissociation
limit and we thus expect the rALDA curve to coincide with
the shifted RPA curve in this limit.

In contrast to the case of H,, RPA fails dramatically in
describing the dissociation of Hy . Again, the situation is very
similar for rALDA, except for the fact that the energy curve
has been shifted by an amount corresponding to the RPA error
in the correlation energy of a single H atom.

3. Cohesive energies of solids

In Table II, we show the cohesive energies of 14 solids
calculated with the LDA, PBE, RPA@LDA, RPA@PBE, and
rALDA evaluated at experimental lattice constants. It is seen
that PBE performs much better than RPA, which consistently
underestimates the cohesive energies. For most solids, rALDA
significantly improves the accuracy of RPA and becomes
comparable to PBE. The only exception is Al, where rALDA
performs slightly worse than RPA. The overall absolute mean
error of rALDA is 0.1 eV, which is a factor of 1.5 better than
PBE and a factor of three better than RPA. The deviations from
experimental values are plotted in Fig. 6.

For the transition metals, we have found that it is very
important to include the semicore states in the calculations.
For Ag, Pd, and Rh, we have thus included the entire n = 4
shell in the calculations and for Cu, we have included the 3s
and 3 p electrons as well as the 3d and 4s states. Both exchange
and correlation energies are affected by this and treating the
semicore states as a frozen core tends to reduce the atomization
energies for these elements. The effect is less severe for the

TABLE II. Cohesive energy per atom of solids evaluated at the
experimental lattice constant corrected for zero-point anharmonic
effects. Experimental cohesive energies are corrected for zero point
energy and taken from Ref. 5. All numbers are in eV.

PBE RPA@PBE LDA RPA@LDA rALDA Expt.
C 7.73 6.99 8.94 6.83 7.54 7.55
Si 4.55 4.32 5.63 4.37 4.82 4.68
SiC 6.38 5.96 7.38 5.89 6.44 6.48
Ge 3.72 3.55 4.64 3.72 3.95 3.92
BN 6.94 6.47 8.05 6.40 6.90 6.76
LiF 4.28 4.11 4.87 3.92 4.33 4.46
AIN  5.67 5.50 6.58 5.43 5.63 5.85
MgO 4.93 4.82 5.76 4.71 4.97 5.20
Na 1.08 0.98 1.23 0.97 1.07 1.12
Al 3.43 3.14 4.00 3.06 2.97 3.43
Pd 3.70 3.83 5.07 3.86 3.93 3.94
Rh 5.71 5.50 7.53 5.30 5.73 5.78
Cu 3.47 3.34 4.49 3.35 3.57 3.52
Ag 247 2.75 3.60 2.77 291 2.98
MAE 0.17 0.32 0.86 0.36 0.12
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FIG. 6. (Color online) Cohesive energies of 14 solid evaluated
with LDA, PBE, RPA@PBE, RPA@LDA, and rALDA. The dashed
line is rALDA results evaluated with the average density Eq. (22).

two noble transition metals, where the atomization energies
increase by 0.1 eV when semicore states are included. It
should be noted that the present RPA values are much closer to
experimental values than previously published results>® where
semicore states were not included.

For periodic systems, the rALDA method [with the physical
two-point density (21)] is significantly more computationally
demanding than RPA calculations since the rALDA kernel
has to be sampled in all unit cells corresponding to the
k-point sampling. Furthermore, due to the long range of
the Coulomb interaction, it becomes difficult to converge the
numerical Fourier transform of the Hartree-exchange kernel,
in the sampled unit cells, see Eq. (23). For solids, we therefore
perform the numerical Fourier transform of the pure exchange
kernel, which has a much shorter range and then add the exact
Fourier transform of the Hartree kernel vg(q) = 47/|G + q|:

(@ = Fealf(@r)] +ve(@dce.  (27)

Here, f* is defined as in Eq. (24). Since f* involves the bare
Coulomb interaction, which diverges at r = r’, we represent
this contribution by a spherical average over a small volume
containing exactly one grid point. In Appendix, we present a
convergence test, with respect to unit cell sampling for bulk
Pd.

In contrast, using the density at average coordinates (22)
allows one to perform the calculations in a single unit cell,
which makes the computational requirements similar to RPA.
The results are shown as a dashed line in Fig. 6 and are seen to
be less accurate although the method still improves the RPA
cohesive energies.

Again, it is interesting to note that RPA@LDA performs
worse than RPA@PBE. This could indicate that part of the
errors obtained in LDA based calculations originate from
a bad representation of the KS eigenstates and eigenvalues
within LDA and we expect that this error is largest for the
isolated atoms. For example, if we evaluate the Al atom with
rALDA @PBE, we obtain a correlation energy that is 0.4 eV
smaller than rALDA@LDA and this would put the cohesive
energy of both Al and AIN right on top of the experimental
values. In addition to the eigenstates and eigenvalues, the
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rALDA energies also depend explicitly on the density, which
enters through the kernel. Thus, in rALDA, an additional error
may arise if the LDA density represents a poor approximation
to the exact density.

C. Cg coefficients

At large distances, the dispersive interactions between
atoms give rise to a binding energy that scales at E(r) =
Ce/r%. The Cg coefficients depend on the polarizability of the
atoms and can be calculated from the Casimir-Polder formula
as

3 oo
ci=2 f wiwa;(io)do, (28)
7 Jo
where
ai(iw) = — / drdr'zy;(r,xiw)? 29)

is the polarizability of atom i. The Cg coefficients thus consti-
tute a direct measure of the quality of a given approximation
for the response function.

In Table III, we show the C¢ coefficients calculated for
eight different atoms (with i = j) using LDA (Kohn-Sham
response function), RPA@LDA, and rALDA. In a plane-wave
representation, the polarizability involves a sum over the G,
and G components of the response function and is hard to
converge with respect to cutoff due to the discrete jumps in
the number of G, with increasing cutoff. We were thus not
able to converge the results to more than two significant digits,
however, this is sufficient to assess the overall quality of the
different approximations for x.

The performance is highly dependent on the type of
atoms considered. For the noble gas atoms, LDA tends to
overestimate the Cg coefficients, whereas RPA and rALDA
gives more accurate results. rALDA seems to take the lead
in performance for the large noble gas atoms, but is inferior
to RPA for He. For the alkaline elements Li and Na, the
Kohn-Sham LDA polarizability is very close to the exact
value, whereas RPA significantly underestimates and rALDA
performs much better. The alkaline earth species Be and Mg
are severely overestimated by LDA and underestimated by
RPA, whereas rALDA provides good agreement with the
exact values. The overall performance is captured in the mean
absolute relative error (MARE) and it is seen that rALDA
outperforms LDA by a factor of 7 and RPA by a factor 3.

TABLE III. Cg coefficients of eight atoms calculated with LDA,
RPA, and rALDA. All values are in atomic units.

LDA RPA@LDA rALDA Exact
He 2.2 1.5 1.8 1.44
Ne 9 6 7 6.48
Ar 140 57 67 63.6
Kr 280 110 130 130
Li 1290 493 1180 1380
Na 1520 560 1280 1470
Be 590 163 243 219
Mg 1400 370 570 630
MARE 0.79 0.29 0.11
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However, due to the large scatter in results for different types of
atoms, a proper assessment of the performance would require a
larger set of atoms. Finally, the results seem to be very sensitive
to the choice of input orbitals and RPA@HF has been shown
to produce somewhat worse results for the noble gas atoms,
but better results of the alkaline earth atoms.? Nevertheless,
this small test system clearly indicates that rALDA is superior
to RPA for Cg coefficients.

D. Van der Waals interactions

A major advantage of RPA is the accurate representation of
dispersive interactions, which are absent from any semilocal
density functional. RPA has thus proven successful in describ-
ing the interlayer bonding in hexagonal boron nitride*® and
graphite® as well as the interaction between graphene and
metal surfaces.®%-10 Furthermore, RPA has been shown to yield
a threefold improvement in binding energies of the S22 test
set’* of weakly bound molecular dimers, compared to PBE.'?

Since the main merit of RPA is the applicability to van
der Waals bonded systems, it is of vital importance that
any extension of RPA does not destroy the good description
of long-range correlation. The rALDA kernel in Eq. (12)
approaches the Hartree kernel for » — oo and we therefore
expect rALDA to produce results similar to RPA for van
der Waals bonded systems. Below, we will explicitly verify
that this is the case by calculating binding energies for a few
members of the S22 test set and the potential energy curve of
bilayer graphene.

1. Binding energies of molecular dimers

The binding energies of four members of the S22 test set are
displayed in Table IV. The rALDA energies are seen to be very
similar to RPA binding energies. Except for the case of the CHy
dimer, the bonding in these particular dimers does not have a
purely nonlocal character and PBE actually performs better
than RPA and rALDA. We also show the energies obtained
with the van der Waals density function of Ref. 35, which
is seen to perform worse than RPA/rALDA for the relatively
strongly bound (H,CO,), and similar to RPA/rALDA for the
remaining three dimers.

Our plane-wave implementation is ill suited for calculations
of this type, which require large supercells and the RPA and
rALDA calculations may not be completely converged with
respect to supercell size. However, the example does illustrate
the similarity of RPA and rALDA for dispersive interactions
between molecules.

TABLE IV. Dimer binding energies for four members of the S22
data set. The reference energies and applied geometries are based on
coupled cluster [CCSD(T)] calculations from Ref. 34. All number are
ineV.

vdW-DF PBE RPA@PBE LDA RPA@LDA rALDA Ref.

(H,CO,), 0.64 0.77 0.71 1.16 0.70 0.71 0.82
(H,0), 0.17 0.21 0.18 0.34 0.17 0.17 0.22
(NH3), 0.10 0.12 0.12 0.22 0.10 0.10 0.14
(CHy), 0.03 0.00 0.02 0.04 0.01 0.01 0.02
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FIG. 7. (Color online) Potential energy curve for bilayer graphene
calculated with different functionals. Each curve has been obtained
by spline interpolation of seven data points.

2. Bilayer graphene

In Fig. 7, we show the binding energy curve of an A-B
stacked bilayer of graphene. As in the case of graphite, the
PBE functional predicts a very weak binding energy and an
equilibrium distance of 4.44 A. The van der Waals density
functional of Ref. 35 gives a binding energy of 22 meV
and an equilibrium distance of 3.65 A. RPA gives a binding
energy of 25 meV and an equilibrium distance of 3.39 A,
whereas rALDA gives a binding energy of 22 meV and an
equilibrium distance of 3.45 A. We should note that the binding
energy curves were obtained by fitting a rather rough set of
interlayer distances and more accurate results would require
more accurate sampling of the binding energy curve. The RPA
and rALDA curves coincide a large distances and decay slower
than the tail of the curve obtained with the van der Waals
functional.

In general, RPA has a tendency to underbind and the
reduced binding energy of rALDA compared to RPA could
imply that rALDA actually performs worse than RPA in this
case. However, in the case of graphite, RPA seems to produce
the exact binding energy between layers® and it is not clear if
RPA is also expected to underbind in this case. Furthermore,
RPA and rALDA seems to give identical results for the few
S22 dimers, and while we do not have accurate experimental
data for the binding energy and equilibrium distance of bilayer
graphene, Fig. 7 merely serves to illustrate the applicability and
similarity of RPA and rALDA for the description of long-range
dispersive interactions.

IV. SUMMARY AND OUTLOOK

We have assessed the performance of a nonlocal adiabatic
kernel (rALDA) for electronic correlation energies. For atom-
ization energies of small molecules and cohesive energies of
insulators and metals, the kernel performs significantly better
than RPA. We have found inclusion of semicore states is crucial
for the description of transition metals at the RPA and rALDA
level. For the small molecules, we also obtain better agreement
with experiments than the SOSEX extension to RPA. The
method preserves (but does not improve) the good description
of static correlation and dispersive interactions, which is the
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main merit of RPA. The kernel also improves the description
of Cg coefficients compared to RPA.

In our opinion, a major advantage of the present approach
is the unique choice of input orbitals and eigenvalues, which
should match the adiabatic (renormalized) kernel. While LDA
orbitals may not be the most accurate choice for evaluating
the Kohn-Sham response function, it is satisfactory that we
do not have to make an arbitrary choice, which can have
a severe influence on the results. From the point of view
of TDDFT, RPA corresponds to the time-dependent Hartree
approximation and a consistent choice in that case would
be to adopt Hartree orbitals and eigenvalues. However, this
would be a very bad starting point and RPA calculations
are usually performed on top of semilocal DFT orbitals or
Hartree-Fock orbitals. In this sense, the nonselfconsistent
rALDA calculations represent a more complete and consistent
scheme than nonselfconsistent RPA.

The computational cost of the method is larger than RPA,
but certainly cheaper than time-dependent exact exchange
or SOSEX. The main differences compared to RPA is the
evaluation of the renormalized nonlocal kernel. For nonpe-
riodic systems, this evaluation does not comprise a major
extension of the computational time compared to RPA. For
the cohesive energies of solids, a large unit cell sampling is
required to converge results and the calculations are somewhat
more time-consuming than RPA. On the other hand for bilayer
graphene, the potential energy surfaces are converged with a
unit cell sampling of four adjacent cell and the computational
cost of TALDA is just 20% extra compared to RPA. The
cohesive energies of solids are important for an assessment
of the method, but for future application to larger systems
(for example molecular adsorption or reaction barriers at
metal surfaces), the calculations will be dominated by the
evaluation of the response function and the computational
cost becomes comparable to RPA. Compared to RPA, another
complication is the spin-dependence of the kernel, which
forces us to solve the full spin-dependent Dyson equation
instead of working with spin-summed quantities. In our plane-
wave implementation, this leads to memory problems for
spin-polarized systems when considering large unit cells and
high cutoff energies. Finally, the coupling constant integration
is carried out numerically due to near-singular behavior of the
kernel. However, this problem is very likely to originate from
the plane-wave representation of the kernel and a different
implementation could probably solve this problem and apply
the analytic result (7).

In the present paper, we have only discussed the renormal-
ized ALDA kernel. However, it should be straightforward to
generalize this to a renormalized adiabatic PBE kernel or in
fact, any semilocal exchange kernel. We would expect this to
improve results further due to more accurate initial orbitals and
eigenvalues and because the kernel would then contain gradi-
ent corrections, which are likely to improve the description
of the interacting response function. The cutoff scheme thus
implies an entire hierarchy of renormalized adiabatic kernels
for correlation energy calculations. One caveat is the fact that
many semilocal approximations to the exchange correlation
energy work well due to error cancellation between exchange
and correlation, and it is possible that one would have to
include the correlation part of the kernel as well, in order
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to obtain highly accurate results. This would, however, be
straightforward and one would simply have to evaluate the
full kernel explicitly along the adiabatic connection since the
linear scaling of pure exchange is lost. It would also be very
interesting to compare the present results, with those obtained
with the fitted nonlocal kernel of Ref. 22, which is defined by
a similar cutoff procedure. We will leave these issues to future
work.
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APPENDIX: CONVERGENCE TESTS

1. Grid spacing

The two-point kernel (23) is evaluated using a density,
which is represented on a real space grid. We have not been
able to derive an explicit PAW correction for the kernel, and
have used the all-electron density for calculations in this work.
Since the all-electron density varies rapidly in the core region
of atoms, it is not obvious that it is possible to converge
the kernel with respect to grid spacing. However, the ALDA
exchange kernel approaches zero for large densities and as it
turns out, the rapidly oscillating core region does not contribute
much to the rALDA kernel. This is illustarted in Fig. 8
where the correlation energy of an N, molecule is plotted for
decreasing grid spacing. The energy difference (contribution
to the atomization energy) converges rapidly and is accurate
to within 10 meV at 0.17 A. This is the value used for all
calculations in the present work and is close to the default
value of 0.18 A in GPAW. The correlation energy of a single
N atom is also close to convergence at this value, whereas a
slightly smaller grid spacing is required for N,.

#2014 o016 018 020 022
Grid spacing [A]

FIG. 8. (Color online) Convergence of rALDA correlation energy
with respect to grid spacing for the atomization energy of Nj.
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2. Unit cells

For the molecular and atomic systems in this work, we have
obtained the plane-wave representation of the rALDA kernel
by evaluating the full Hartree-exchange kernel in real space
and performing a numerical Fourier transform,

66 (@ =10) = Foa [ APARIr) + 0 n1(er)], (A
in a single unit cell. This results in a truncation on the
kernel whenever r or r’ is outside the unit cell, which means
that the system will not interact with its periodic images.
Another major advantage of this approach is that the full
Hartree-exchange kernel is finite forr = r’, see Eq. (13), which
is not true for the bare exchange kernel (15).

For solids, however, it is important to take into account the
long-range nature of the Coulomb interaction. The renormal-
ized Coulomb interaction v" approaches the bare Coulomb
interaction when r — oo and it becomes difficult to converge
the Fourier transform of this with respect to the number of
sampled unit cells. For periodic systems, we therefore only
represent the exchange part of the kernel in real space and add
the exact Fourier transform of the Hartree kernel:

e (@ = v6(Q866 + Forqe+q[ [LPA )], (A2)

where vg(q) = 47/|G + q|*. This representation is easier to
converge since fAMPA(r) — sin(2kp[n]r)/r forr — oo. This
is illustrated in Fig. 9 where we compare the convergence of the
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FIG. 9. (Color online) Convergence of rALDA correlation energy
with respect to sampled unit cells of solid Pd. rALDA1 denotes the
implementation (A1) and rALDA? is the implementation (A2). The
scale on the principle axes is 1/N.

two implementations with respect to the number of sampled
unit cells. It is seen that Eq. (A2) exhibits convergence behavior
very similar to RPA, which means that the convergence is
largely governed by Brillouin zone sampling of Kohn-Sham
states. In contrast, the implementation Eq. (A1) converges as
~1/N, where N is the number of sampled unit cells. We also
show the difference between the two methods, which slowly
approaches zero in the limit of N — oo. However, the bare
exchange kernel diverges for r = r’, and this divergence is
represented by a spherical average around a single grid point,
which makes the calculations converge slightly slower with
respect to grid spacing.
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