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Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices
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We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive
Green’s function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies
of GALs. We compare the results to those obtained in a simpler gapped graphene model. A crucial difference
emerges in the behavior of the lowest Landau level, which in a gapped graphene model is independent of magnetic
field. In stark contrast to this picture, we find that in GALs the band gap can be completely closed by applying a
magnetic field. While our numerical simulations can only be performed on structures much smaller than can be
experimentally realized, we find that the critical magnetic field for which the gap closes can be directly related
to the ratio between the cyclotron radius and the neck width of the GAL. In this way, we obtain a simple scaling
law for extrapolation of our results to more realistically sized structures and find resulting quenching magnetic
fields that should be well within reach of experiments.
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I. INTRODUCTION

Semiconductor antidot lattices have revealed a range of in-
triguing transport phenomena. In particular, transport in mag-
netic fields has been applied in studies of magnetoresistance,
localization, Shubnikov–de Haas oscillations, and quantum
Hall effects.1,2 Traditionally, such structures have been based
on GaAs heterojunctions. Recently, however, graphene antidot
lattices (GALs) have been proposed3,4 and magnetotransport
studies have been realized experimentally.5–8 Whereas GaAs
antidots are typically produced by dry etching or local ion im-
plantation in molecular beam epitaxy grown heterostructures,
GALs are produced by simply etching arrays of holes into
graphene sheets placed on suitable insulating substrates. Etch
masks can be fabricated using either e-beam lithography or
block copolymers. In this manner, features of the order 10–
20 nm have been obtained.9,10 In addition to GALs fabricated
via etching, the patterned hydrogen adsorption technique11

also produces structures resembling periodic antidots. Here,
hydrogenated graphane-like islands form “forbidden” regions
similar to holes but on a few-nanometer scale. Very recently,
direct e-beam writing of small GALs with holes around 2 nm
has been demonstrated.12

While magnetotransport is well documented in experi-
mental GAL studies, the theoretical description of extended
GALs in magnetic fields is a challenging task, because the
associated vector potential breaks translational invariance.
Structures comprising only a single or few antidots are more
easily analyzed. For instance, Yang and coworkers13,14 have
included magnetic fields in studies of isolated graphene
antidots and small arrays, with perforations modeled as
circular electrostatic potentials. The present authors studied
an isolated antidot using a mass term barrier.15 The problem
of modeling periodic arrays of graphene antidots in magnetic
fields is much more involved, however. The energy spec-
trum of electrons in periodic potentials subject to magnetic
fields takes the form of self-similar Hofstadter “butterflies”.16

Hofstadter butterflies have previously been studied in pristine
graphene,17,18 bilayer graphene,19 twisted bilayer graphene,20

graphene with point defects,21 and graphene quantum dots.22

Very recently, signatures of Hofstadter spectra have been
studied experimentally in single and bilayer graphene on
hexagonal boron nitride.23,24 In all cases, an intriguing self-
similar structure emerges whenever the characteristic magnetic
length becomes comparable to the geometrical period. The
relatively large size of this period is challenging for an
atomistic description of the spectrum, however. In pristine
graphene, a magnetic field leads to a gapped Landau level
structure. Hence, for graphene modified in order to induce band
gaps (such as GALs, electrically biased bilayers,25 quantum
dots,22 and geometrically sharp electrostatic gates26,27) an
interesting interplay between geometric and B-field induced
band gaps is expected. A simplified model capturing the
essentials of geometrically induced band gaps is that of gapped
graphene,28 for which a unique Landau level structure29 and
magneto-optical response30 have been predicted. For magnetic
effects, though, little is known about the reliability of gapped
graphene as an approximation to graphene with a gapped
spectrum induced by geometric modifications.

In the present work, we study the properties of GALs in
magnetic fields using a tight-binding model with magnetic
effects included via a Peierls phase. We compare true antidot
geometries to gapped graphene approximations and find
important differences. Most importantly, we observe band-gap
quenching by the magnetic field in GALs whereas in gapped
graphene the band gap is completely robust for arbitrarily
large fields. Hence, the behavior of GALs is reminiscent of
graphene quantum dots22 and graphene nanoribbons.31,32 We
also demonstrate simple scaling laws to extrapolate our results
to experimentally feasible structures.

II. THEORY AND METHODS

A GAL is modeled as an infinite, periodic array of circular
holes in the graphene sheet. The superlattice spanning the
holes is assumed to have regular triangular symmetry, in order
to ensure the existence of a full band gap for all unit cell
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geometries. We note that in general, the existence and size of
the band gap in GALs depends intrically on both the symmetry
of the superlattice33,34 as well as the exact edge geometry of
the holes.35–37 In this paper, we consider GAL geometries
for which a sizable gap is introduced. We denote the radius
of the hole and the side length of the unit cell by R and
L, respectively, both of which are measured in units of the
graphene lattice constant a. Hence, a given GAL is designated
by {L,R}, where L (but not necessarily R) is an integer.

We use a nearest-neighbor tight-binding model to study
the energy spectrum of π electrons within the GAL, i.e.,
the hopping integral tij is taken as −t with t = 3 eV for
neighboring sites and vanishes otherwise. The effect of the
magnetic field is included via a Peierls phase added to the
hopping term between atomic sites i and j : tij → tij e

iφ ,

with the phase given as φ = (e/h̄)
∫ Rj

Ri
A · dl. Here, Ri and

Rj denote the positions of the atomic sites, while A is the
magnetic vector potential. The graphene sheet is in the xy

plane and the magnetic field is taken to be constant and
directed perpendicularly to the sheet. Using the Landau gauge
A = Bxŷ the Peierls phase becomes

φ = eB

2h̄
(xi + xj )(yj − yi). (1)

The crucial advantage of the Peierls phase approach is
that lattice periodicity can be restored provided a suitable
“magnetic supercell” containing several original unit cells
is constructed. To this end, we first construct a rectangular
unit cell containing two antidots. This doubled cell is then
repeated N times in the x direction as shown in Fig. 1.
Periodicity is subsequently ensured by requiring that the phase
shift difference be an integer multiple of 2π for a pair of
neighbor sites at the left- and rightmost ends of the supercell,
i.e., separated by a distance of 3NLa. The smallest separation
along the y axis for coupled atoms is a/2

√
3 and so the

minimum B field required for periodicity is

Bmin = 2h√
3eNLa2

. (2)

3NL

2R

3L
(a)

y

x
(b)

{4, 2} {12, 8.6}

FIG. 1. (a) Enlarged supercell used for calculating the magnetic
properties of GALs. The smallest rectangular GAL unit cell is
repeated N times to ensure periodicity of the Peierls phase in the
hopping terms of the tight-binding Hamiltonian. (b) Rectangular unit
cells for two examples of GALs with similar neck widths.

When the flux � = B
√

3a2/2 through a graphene unit cell
equals a flux quantum �0 = h/e, the energy spectrum has
been restored to the unperturbed one. Writing B = nBmin with
n integer we find the relative flux �

�0
= n

NL
. We can thus

calculate the Hofstadter spectra by varying n over the range
[0,NL]. In practice, advantage is taken of the fact that the
same spectrum is obtained for identical ratios n/N , and thus
calculations can be performed on much smaller magnetic unit
cells whenever n and N are commensurate.

From Eq. (2) it follows that the number of repeated unit
cells in the supercell required to handle a certain magnetic
field is inversely proportional to the field strength. Because
of the relatively large size of the fundamental unit cell of a
GAL, the number of atoms in the magnetic supercell becomes
very large even for substantial magnetic fields. We thus cannot
easily rely on standard diagonalization techniques to determine
the properties of GALs in magnetic fields. Instead, we expand
on well known recursive Green’s function methods.38,39 These
methods are commonly applied to transport studies of finite
or semi-infinite structures sandwiched between semi-infinite
leads. Here, periodicity of the central region is at most along
a single direction and the Hamiltonian can easily be written
in block-diagonal form, which is the basis upon which the
recursive Green’s function formalism is built. In our case, pe-
riodicity is along both directions. We note that one immediate
solution to this problem is to perform a transformation of
the Hamiltonian to force it into block-diagonal form, which
is possibly even with periodic boundary conditions in both
directions. This, however, requires a doubling of the size of
the individual cells used in the recursive algorithm which,
for large GALs, we find to be slower than our method for
calculating the density of states. In the Appendix, we present
our extension of the recursive Green’s function formalism so
that periodicity can be handled without reshuffling the ele-
ments of the Hamiltonian. We use this formalism to calculate
the density of states according to ρ(E) = −π−1Im{Tr[Ĝr ]},
where the retarded Green’s function Ĝr = (E + iγ − Ĥ )−1

includes a small broadening term γ . A related method based
on stochastic evaluation of Ĝr has previously been used to
study magnetic effects in twisted bilayers.20 We note that
other methods exist for obtaining densities of states for very
large structures. However, while methods based on Lanczos
iteration40 essentially arrive at approximate results, a benefit
of our method is that it is an exact way of arriving at densities
of states for very large, periodic structures. As such, there are
no convergence parameters in the method.

III. HOFSTADTER BUTTERFLIES

As mentioned above, a phenomenological gapped graphene
model may be used as an approximation of the true GAL
geometry. Here, alternating on-site energies ±� are assigned
to the atoms belonging to the two sublattices. This model
produces a band gap of Eg = 2�, which is adjusted to the gap
of the full GAL band structure. While conceptually simple, this
model quite accurately describes the low-energy band structure
of graphene antidot lattices in the absence of magnetic fields.
Further, we have previously demonstrated good agreement
between the optical response of GALs and gapped models for
photon energies close to the band gap.28 To compare with the
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FIG. 2. (Color online) Hofstadter butterfly for the gapped
graphene model, with the gap set to match that of the {4,2} antidot
lattice. Shown is the density of states as function of energy and
the relative flux through a graphene unit cell. To ease visibility, the
logarithm of the density of states is plotted. The bottom panel shows
a closer view of the low-flux part of the spectrum. The dashed lines
show the lowest five Landau levels expected from a Dirac treatment
of the problem.

magnetic spectra for GALs we show in Fig. 2 the Hofstadter
butterfly of a gapped graphene model, wherein the effect of
the antidot lattice is included via such a staggered potential.
The figure shows the density of states as a function of energy
and the relative flux through a graphene unit cell. As expected
from the discussion above, we see that when �/�0 = 1 the
spectrum in absence of a magnetic field is restored. One
striking characteristic that emerges in the figure is the zeroth
Landau levels, which for gapped graphene sit at ±�, i.e.,
exactly separated by the band gap.29 These zeroth Landau
levels are characteristic of graphene and exhibit energies
that are independent of magnetic field.41–43 Whereas for low
magnetic fields, where the Dirac model is applicable, the zeroth
Landau levels are indeed completely independent of magnetic
field, we do see a broadening and eventual splitting of the levels
into multiple bands as the magnetic field becomes sufficiently
strong. This is equivalent to what is seen for ordinary, gapless
graphene.44

Note that the full range of relative magnetic flux shown
in the figure corresponds to unrealistically large magnetic
fields up to 79 kT, well beyond the reach of experiments.
A zoom of the low-flux part of the butterfly is shown in

the bottom panel of Fig. 2. For comparison we also show
the Landau levels expected from a Dirac equation treatment,
Ens = s

√
�2 + nh̄2ω2

c , with s = ±1 and n a non-negative
integer. Here, ωc = √

2vF /lB , with vF the Fermi velocity of
graphene and lB = √

h̄/(eB) the magnetic length. Note how
the fractal structure only really emerges once the relative
flux is of the order of �/�0 = 0.05, corresponding to a
huge magnetic field strength of the order of B � 4 kT. The
crucial parameter for seeing signatures of the fractal structure
is that the magnetic length should be of the order of the
lattice constant of the material. In pristine graphene—and
indeed in any bulk material—this requires unrealistically large
magnetic fields. Thus, the much larger superlattice introduced
by the GAL is a way of overcoming this obstacle. A similar
explanation applies to the recent experimental studies of effects
related to Hofstadter butterflies in single- and bilayer graphene
on hexagonal boron nitride.23,24 Here, a moiré superlattice
is formed due to the slight mismatch in lattice constant
between graphene and boron nitride. In the present work, the
fundamental superlattice period is given by the GAL lattice
constant

√
3La. Thus, due to the B−1/2 behavior of lB , the

B field, at which novel magnetic features become visible, is
reduced roughly by a factor of L2.

The Hofstadter butterflies for two examples of GALs,
{4,2} and {12,8.6}, are illustrated in Figs. 3 and 4. The
geometries of these GALs are illustrated in Fig. 1(b). Note
that the radius is chosen such that we ensure that no dangling
bonds are created. While these structures, having feature sizes
below one nanometer, are smaller than what can be achieved
experimentally, we will demonstrate below that certain scaling
laws can be used to extrapolate results to GALs with more
realistically sized features. Focusing first on the {4,2} GAL we
note that, while the structure of the spectrum is significantly
richer than that of gapped graphene in Fig. 2, many features of
the gapped graphene spectrum are preserved. In general, the
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FIG. 3. Hofstadter butterfly for the {4,2} GAL, showing the
density of states as function of energy and the relative flux through a
graphene unit cell. To ease visibility, the logarithm of the density of
states is plotted. Note the quenching of the gap by the magnetic field
around �/�0 = 0.1, shown in more detail in the zoom in Fig. 5.
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FIG. 4. Hofstadter butterfly for the {12,8.6} GAL, showing the
density of states as function of energy and the relative flux through
a graphene unit cell. To ease visibility, the logarithm of the density
of states is plotted. The arrows indicate the states emerging due to
regions of zigzag edges at the edge of the antidot.

large regions devoid of eigenstates for gapped graphene tend
to be connected by additional bands in the GAL case. This
structure becomes increasingly rich as the size of the GAL
unit cell is increased, as is evident in Fig. 4. Comparing the
two GALs, one significant difference is the additional states at
zero magnetic field for the {12,8.6} GAL, marked by arrows in
Fig. 4. These emerge due to local regions of zigzag geometry
at the edge of the hole, which tend to induce localized states.45

The localized nature of the states residing in this band are
reflected in its behavior as the magnetic field is increased,
where compared to other energy bands it remains very narrow
with little splitting of the energy levels.

IV. MAGNETICALLY INDUCED BAND GAP QUENCHING

The most striking difference between the results for the
GALs in Figs. 3 and 4 and those of the simpler gapped graphene
model shown in Fig. 2 is the behavior of the lowest Landau
level as the magnetic field is increased. A Dirac treatment
of gapped graphene predicts that the energy of this state
should be Eg/2, independent of magnetic field, a behavior
that is confirmed in Fig. 2 also for very large magnetic fields.
However, the spectra for the GALs show an entirely different
behavior. Here, the band gap is quenched as the magnetic
field strength is increased and eventually closes entirely.
This is reminiscent of what is seen for armchair graphene
nanoribbons31,32 and graphene quantum dots.22 The crucial
difference between GALs and a gapped graphene model is the
additional characteristic lengths introduced by the antidots. In
particular, we propose that the gap in a GAL will be quenched
once the magnetic length lB is of the order of the minimum
neck width of the GAL. In a simple picture, when the cyclotron
radius becomes sufficiently small, the individual eigenstates do
not sample the lattice sufficiently for the band gap to be fully
resolved. Because of the unique property of the lowest Landau
level in bulk graphene, namely that it sits at the Dirac point
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FIG. 5. Closer view of the low-flux part of the Hofstadter
butterflies for {4,2}, {8,5}, {9,6}, and {12,8.6} GALs, showing the
quenching of the gap by the magnetic field. Note that these GALs all
have similar minimum neck widths.

energy regardless of magnetic field strength, this will result in a
diminished band gap. We stress that we do not expect a similar
effect to occur in two-dimesional electron gases based on
semiconductor heterostructures, where the energy of the lowest
Landau level is proportional to the magnetic field strength.

To illustrate the discussion above, we show in Fig. 5
zooms of the low-flux region of the spectra of different GALs,
more clearly illustrating the magnetically induced band-gap
quenching. We show four examples of GALs, all of which
have similar neck widths. Despite significant differences in
the band gaps at zero magnetic field we find that the magnetic
flux for which the gap is completely quenched is very similar
for all four GALs. Note the appearance of additional very
narrow bands at zero field in the case of the {9,6} GALs (near
±0.45 eV) and {12,8.6} GALs (near ±0.25 eV). As discussed
above, these states appear due to quasilocalized states residing
predominantly on regions of local zigzag geometry at the edge
of the antidots. Ignoring these additional states for now, and
taking the band gap to be defined as the gap between the wider
energy bands, we see that the dependence of the band gap on
magnetic field is very similar in all four cases.

In Fig. 6 we illustrate the geometry dependence of the
magnetic length lB corresponding to the critical flux �c, for
which the band gap is completely closed, on the minimum neck
width. The neck width of a given GAL is approximately w/a =√

3L − 2R, an expression that is obviously more accurate for
larger structures where the exact atomic details can be safely
disregarded. As expected from the physical picture described
above, we find a clear linear dependence between the two quan-
tities, such that the critical flux is defined via the simple relation
αlB = w, with α � 3.1. Note that lB � 25.7 nm T1/2/

√
B,

suggesting that the gap would be quenched at realistic mag-
netic field strengths for larger structures. Indeed, the scaling
law provides us with a means of extrapolating our theoretical
results to more realistically sized structures. As an example, we
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FIG. 6. (Color online) The magnetic length lB corresponding to
the critical flux for which the band gap is closed as a function of the
neck width w/a � √

3L − 2R of the GAL. The dashed line shows a
best fit of the form αlB = w.

consider a GAL with a lattice constant of 60 nm and an antidot
radius of 25 nm, which represent experimentally feasible
feature sizes.8 The neck width of this GAL is approximately
w � 54 nm, from which the scaling law predicts a critical flux
of �c � 2.82 × 10−5�0. This translates to a magnetic field
strength of B � 2.2 T, well within reach of experiments.

To further illustrate the interplay between the two length
scales set by the magnetic field and the neck width of
the GAL, we have studied the eigenstate nearest to the
Dirac point energy. In particular, we consider the overlap∫

edge |ψ(x,y)|2dx dy of the probability density with the edge
of the antidot. In practice, we take this as being equal to the sum
over the absolute square |cn|2 of the expansion coefficients of
the π orbitals of carbon atoms with only two nearest neighbors.
The lower panel of Fig. 7 shows the edge overlap as a function
of the relative magnetic flux for a {12,5} GAL. The edge
overlap is shown relative to the overlap that would be expected
if the probability density were evenly distributed across all
carbon atoms; i.e., we plot

∑
n∈edge |cn|2(Ntot/Nedge), where

Ntot is the total number of carbon atoms in the structure while
Nedge is the number of carbon atoms with only two nearest
neighbours. In the figure, we also include a best fit to the data,
showing a clear exponential decay of the edge overlap with
magnetic flux. For comparison, we show in the upper panel
the density of states right at the Dirac point energy versus the
magnetic flux. Here, we see an exponential increase of the DOS
as the eigenstate is pushed away from the edge of the antidot.
The critical flux where the band gap is closed corresponds
quite accurately to the point where the exponential decay of
the edge overlap starts to level off (for larger magnetic fields
than included in the figure). In the insets of the lower panel
of Fig. 7, we show two charge densities corresponding to
the magnetic flux and edge overlaps indicated with circles in
the figure. Because of the high degeneracy of the eigenstates
we show the probability densities summed over all states in the
lowest band of energies. The black dots indicate carbon atoms
while the size and shading of the filled, red circles illustrate the
probability density. To ease visibility we show just the first four
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FIG. 7. (Color online) Magnetic flux dependence for a {12,5}
GAL of (upper panel) the density of states (in arbitrary units) at the
Dirac point energy and (lower panel) the overlap with the antidot
edge of the eigenstate corresponding to the lowest (positive) energy.
The overlap is shown relative to the overlap assuming uniform
distribution of the eigenstate. See the main text for details. In both
panels, the dashed line shows best fits of exponential growth or decay,
respectively. The insets in the lower panel show the probability density
for the two eigenstates marked with circles.

rectangular GAL unit cells, which correspond only to a small
region of the full magnetic unit cell used in the calculations.
The transition from a state with significant overlap with the
antidot edge to a state localized predominantly between the
antidots is quite evident.

These results fit very well with the physical picture,
discussed above, of the band gap closing when the cyclotron
radius becomes sufficiently small compared to the neck width
of the GAL. It is also interesting to note the tendencies for
the eigenstates to localize at the edge of the antidots for
smaller magnetic fields, a result that fits well with previous
studies of the magnetic properties of a single, isolated antidot
in graphene.15

V. SUMMARY AND DISCUSSION

Using a method based on the recursive Green’s function for-
malism extended to deal with structures periodic in two dimen-
sions, we have calculated Hofstadter butterflies of graphene
antidot lattices (GALs). While the low-energy properties of
GALs are usually well described in a simpler gapped graphene
model, we find qualitative differences in the case of GALs
in magnetic fields. In particular, the lowest Landau level is
not—as is the case in gapped graphene models—independent
of magnetic field. Instead, we find that the GAL band gap can
be effectively tuned by applying a magnetic field. In particular,
the band gap is quenched entirely when the cyclotron radius
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becomes of the order of the neck width of the GAL. While
for lower magnetic fields the eigenstates nearest the Dirac
point energy are localized predominantly at the antidot edges,
we find that in the transition region, where the band gap is
quenched, the states become increasingly localized between
antidots. Using a simple scaling law we show that the predicted
band-gap quenching might be seen for reasonable magnetic
field strengths in experimentally feasible structures.

We note that a similar effect of magnetically induced band-
gap quenching has been seen in graphene nanoribbons.32 In
the case of ribbons, however, the quenching occurs in a regime
where the cyclotron radius is much larger than the nanoribbon
width and, thus, before the formation of Landau levels.
For GALs, we observe something quite different, namely a
quenching of the gap that occurs for magnetic field strengths
significantly larger than the onset of a Landau level structure.
For ribbons, this effect has been used to predict an intrinsic
magnetoresistive effect.32 It is interesting to wonder whether
very large negative magnetoresistance might be seen for GALs
in magnetic fields due to the magnetically induced band-gap
quenching. Indeed, Giesbers et al. have seen indications of
negative magnetoresistance in measurements of GAL samples
with features of the order 100 nm in magnetic fields in the
range of a few teslas.8 Quite large negative magnetoresistance
has also been seen at low-temperature measurements of GALs
with neck widths of roughly 50 nm in recently published
results by Zhang et al.46 Our scaling result would suggest
a quenching of the band gap at roughly 2.6 T, which is of the
same order of magnetic field that they see a significant increase
in conductance. We note that we expect disorder to play a
significant role in actual samples, the effect of which we have
not considered in the present paper. However, an interesting
point in relation to the results of Fig. 7 is that the tendency
of the states to localize between the antidots might have the
benefit of reducing any effects pertaining to the particular
edge geometry of the hole. This would conceivably include
any effects due to disorder on the edge of the antidot, which is
to be expected in most realizations of GALs. We plan to pursuit
further theoretical studies of these topics in future work.
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APPENDIX: RECURSIVE METHOD

Our numerical method is based on standard recursive
Green’s function techniques, wherein advantage is taken of
the block-diagonal form of the Hamiltonian. Here, we briefly
outline the standard formalism and extend it to incorporate
periodic boundary conditions in both directions. We consider
the whole system as being assembled via N subsystems, as
illustrated in Fig. 8. Each isolated subsystem is characterized
by a Hamiltonian matrix Hn and a corresponding Green’s
function Gn = [(E + iγ )I − Hn]−1, with I an identity matrix,

H1 H2 Hn−1 Hn Hn+1 HN

H(n)

Vn

V1,N

FIG. 8. The Hamiltonian H(N) of the complete system can be
assembled from Hamiltonians of isolated subsystems Hn and the
matrices Vn describing the coupling between the subsystems. Note
that, due to periodicity, the first and final subsystems are coupled via
the matrix V1,N .

and where we have included the broadening term γ . The
coupling between the nth and the (n + 1)th subsystem is
described by the matrix Vn. Further, we define H(n) and
G(n) as the Hamiltonian and Green’s function, respectively,
of the combined system of the first n subsystems, including
the coupling between them. Taking advantage of the block-
diagonal form of H(n) for n < N , the standard recursive
Green’s function method relies on a recursive procedure for
n + 1 < N reading

G(n+1)
n+1,n+1 = [(E + iγ )I − Hn+1 − �n]−1,

G(n+1)
i,n+1 = G(n)

i,nVnG(n+1)
n+1,n+1, i � n,

(A1)
G(n+1)

n+1,j = G(n+1)
n+1,n+1V†

nG(n)
n,j , j � n,

G(n+1)
i,j = G(n)

i,j + G(n)
i,nVnG(n+1)

n+1,n+1V†
nG(n)

n,j , i,j � n,

where we have introduced the self-energy �n = V†
nG(n)

n,nVn,
which takes care of the coupling between the subsystems.
Note that the subscripts of the Green’s functions refer not to
individual elements but to submatrices defined by the sizes of
the subsystems. For the last step of the recursive procedure,
n + 1 = N , we do take into account the coupling to the first
subsystem due to periodicity, resulting in

G(N)
N,N = [(E + iγ )I − HN − �N−1]−1

G(N)
i,N = (

G(N−1)
i,1 V1,N + G(N−1)

i,N−1VN−1
)
G(N)

N,N , i < N,

G(N)
N,j = G(N)

N,N

(
V†

1,N G(N−1)
1,j + V†

N−1G(N−1)
N−1,j

)
, j < N,

G(N)
i,j = G(N−1)

i,j + (
G(N−1)

i,1 V1,N + G(N−1)
i,N−1VN−1

)
G(N)

N,N

× (
V†

1,N G(N−1)
1,j + V†

N−1G(N−1)
N−1,j

)
, i,j < N,

(A2)

with the self-energy

�N−1 = (
V†

1,N G(N−1)
1,N−1 + V†

N−1G(N−1)
N−1,N−1

)
VN−1

+ (
V†

1,N G(N−1)
1,1 + V†

N−1G(N−1)
N−1,1

)
V1,N . (A3)

While the method above can be used directly to obtain the
full Green’s function G(N) of the whole system, when dealing
with very large systems this method is both too slow and too
memory intensive. Instead, we derive a recursive algorithm
specifically for calculating the density of states. We calculate
the density of states via the relation ρ(E) = −π−1Im{T (N)

G },
where we have defined T

(n)
G = Tr[G(n)]. We first treat the case

where n + 1 < N or periodicity is ignored. Using the relations
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for the elements of the Green’s function given in Eqs. (A1),
and doing a bit of algebra, we arrive at

T
(n+1)
G = T

(n)
G + Tr

[
Gn+1

(
V†

nE(n)
nn Vn + I

)]
, (A4)

where to ease notation we have defined the shorthand Gn+1 =
G(n+1)

n+1,n+1. Furthermore, we have introduced the ancillary
matrix

E(n)
nn =

n∑
i

G(n)
n,iG

(n)
i,n, (A5)

with the recursive relation

E(n+1)
nn = Gn+1

(
V†

nE(n)
nn Vn + I

)
Gn+1. (A6)

While our notation is slightly different, we note that this result
has previously been derived by MacKinnon.38,39 We include
the results here for completeness. For the final step of the
recursive algorithm we take into account periodicity of the
structure via Eqs. (A2) which leads to

T
(N)
G = T

(N−1)
G + Tr

[
GN

(
V†

1,N E(N−1)
11 V1,N

+ V†
1,N E(N−1)

1n VN−1 + V†
N−1E(N−1)

n1 V1,N

+ V†
N−1E(N−1)

nn VN−1 + I
)]

, (A7)

where we have introduced additional ancillary matrices

E(n)
n1 =

n∑
i

G(n)
n,iG

(n)
i,1, (A8)

E(n)
1n =

n∑
i

G(n)
1,iG

(n)
i,n, (A9)

E(n)
11 =

n∑
i

G(n)
1,iG

(n)
i,1, (A10)

with recursive relations

E(n+1)
n1 = Gn+1

[
V†

nE(n)
n1 + (

V†
nE(n)

nn Vn + I
)
G(n+1)

n+1,1

]
, (A11)

and similarly

E(n+1)
1n = [

E(n)
1n Vn + G(n+1)

1,n+1

(
V†

nE(n)
nn Vn + I

)]
Gn+1. (A12)

Finally, we have

E(n+1)
11 = E(n)

11 + G(n+1)
1,n+1V†

nE(n)
n1 + E(n)

1n VnG(n+1)
n+1,1

+ G(n+1)
1,n+1

(
V†

nE(n)
nn Vn + I

)
G(n+1)

n+1,1, (A13)

while the recursive procedures for G(n)
1,n and G(n)

n,1 are of course
given by Eqs. (A1).
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