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Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential
and piezoelectric scattering in monolayer MoS2 from first principles
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We theoretically study the acoustic phonon limited mobility in n-doped two-dimensional MoS2 for temperatures
T < 100 K and high carrier densities using the Boltzmann equation and first-principles calculations of the acoustic
electron-phonon (el-ph) interaction. In combination with a continuum elastic model, analytic expressions and the
coupling strengths for the deformation potential and piezoelectric interactions are established. We furthermore
show that the deformation potential interaction has contributions from both normal and umklapp processes and that
the latter contribution is only weakly affected by carrier screening. Consequently, the calculated mobilities show
a transition from a high-temperature μ ∼ T −1 behavior to a stronger μ ∼ T −4 behavior in the low-temperature
Bloch-Grüneisen regime characteristic of unscreened deformation potential scattering. Intrinsic mobilities in
excess of 105 cm2 V−1 s−1 are predicted at T < 10 K and high carrier densities (n � 1011 cm−2). At 100 K, the
mobility does not exceed ∼ 7 × 103 cm2 V−1 s−1. Our findings provide new and important understanding of the
acoustic el-ph interaction and its screening by free carriers, and is of high relevance for the understanding of
acoustic phonon-limited mobilities in general.
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I. INTRODUCTION

Two-dimensional (2D) atomic crystals1 such as graphene2–4

are promising candidates for future electronic applications.
Monolayers of semiconducting transition metal dichalco-
genides (MX2) constitute a new family of 2D materials5,6

which have interesting electronic and optical properties.7–16

In conjunction with the excellent gate control inherent to
atomically thin materials their finite gap makes them desirable
materials for various electronic applications. However, in spite
of the recent progress in sample fabrication and transport mea-
surements on gated single- to few-layer samples,1,10,12,17–22

little is so far known about the intrinsic carrier properties such
as factors limiting the achievable mobilities.

Experimentally, monolayer MoS2 has been demonstrated
to be a direct-gap semiconductor with a band gap of ∼1.8 eV8

and a room-temperature mobility in n-type samples ranging
from ∼1 to ∼200 cm2 V−1 s−1 depending on the device
structure.1,10,17,18,23,24 The highest values have been obtained in
top-gated samples with a high-κ gate dielectric,10,24 indicating
that impurity scattering can be strongly suppressed by
dielectric engineering,25 and mobilities close to the the-
oretically predicted intrinsic phonon-limited mobility of
∼410 cm2 V−1 s−1 can be achieved.26 Other theoretical studies
have addressed different issues related to the performance of
monolayer MoS2 transistors.27,28

At low temperatures where optical phonon scattering is
suppressed, scattering by acoustic phonons can be expected
to become an important limiting factor for the mobility
of the two-dimensional electron gas (2DEG) confined to
the atomic layer of an extrinsic 2D semiconductor. This
is the case in conventional heterostructure-based 2DEGs
where impurity and acoustic phonon scattering are dominating
scattering mechanisms at low temperatures.29 In contrast to

impurity scattering which can be suppressed by, e.g., dielectric
engineering, scattering by acoustic phonons is intrinsic to
the semiconductor and cannot be eliminated. The intrinsic
mobility determined by acoustic phonon scattering alone
therefore provides an important upper limit for the achievable
mobilities.

In the low-temperature regime, acoustic phonon dominated
transport manifests itself in a strong change in the temperature
dependence of the carrier mobility once the temperature is
lowered below the Bloch-Grüneisen (BG) temperature TBG.
It is given by kBTBG = 2h̄cλkF , where kF is the Fermi
wave vector, cλ is the acoustic sound velocity, and kB is
the Boltzmann constant, and marks the temperature below
which full backscattering at the Fermi surface by acoustic
phonons is frozen out (see Fig. 1). For heterostructure-based
2DEGs the BG regime is well established,30,31 and recently,
transport in the BG regime has been studied in graphene both
experimentally32 and theoretically.33–35

In a 2DEG the Fermi wave vector kF scales with the carrier
density as

√
n and the Bloch-Grüneisen temperature acquires a

similar density dependence kBTBG = 2h̄cλ

√
4πn/gsgv with gs

and gv denoting the spin and valley degeneracy, respectively.36

For monolayer MoS2 (gv = 2) this results in BG temperatures

T TA
BG ≈ 11

√
ñK and T LA

BG ≈ 18
√

ñK, (1)

for the transverse (TA) and longitudinal (LA) acoustic
phonon, respectively, with the carrier density ñ = n/1012 cm−2

measured in units of 1012 cm−2. These numbers are on
the same order of magnitude as those for graphene,34 and
transport in the high-mobility BG regime should be achiev-
able in monolayer MoS2 (and other 2D transition metal
dichalcogenides). However, the above considerations also
emphasize the importance of high extrinsic carrier densities
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n � 1012 cm−2 in order for the BG transition to occur at suf-
ficiently high temperatures where acoustic phonon scattering
is significant.29 Such large carrier densities can be achieved
with, e.g., advanced electrolytic gating where densities on the
order of n ∼ 1014 cm−2 have been reached in 2D samples of
graphene and MoS2.12,32,37,38

In the present work, we study the acoustic phonon limited
mobility of n-type 2D MoS2 at low temperatures (T < 100 K)
taking into account both deformation potential (DP) and
piezoelectric (PE) scattering. The flexural phonon couples
weakly to charge carriers and is here neglected. In our previous
work considering scattering of both acoustic and optical
phonons,26 only the deformation potential interaction was
taken into account in the coupling to the acoustic phonons.
There we found that the mobility at higher temperatures
(T > 100 K) was dominated by optical phonon scattering.
With piezoelectric interaction included this is still the case,
however, with a slightly lower room-temperature mobility of
320 cm2 V−1 s−1 at n = 1011 cm−2. Otherwise the conclusions
of Ref. 26 remain unaffected. For the temperatures considered
in this work, scattering by intervalley acoustic phonons and
optical phonons is strongly suppressed and can be neglected.26

Using a first-principles approach, we calculate the defor-
mation potential and piezoelectric interactions in 2D MoS2.
Supported by continuum model calculations of the acoustic
el-ph interaction in 2D hexagonal lattices, this allows us to
establish analytic expressions and the individual coupling
strengths for the two scattering mechanisms. The calculated
intrinsic low-temperature mobility provides a platform for
comparison with future measurements of the carrier mobility
in monolayer MoS2 which can (i) lead to an experimental
verification of the theoretical deformation potentials and
piezoelectric constant reported here,39 (ii) reveal to what extent
the mobility is affected by extrinsic surface acoustic/optical
phonons40,41 which have turned out to be important in
substrate-supported graphene samples,42–45 and (iii) address
the importance of the interplay between scattering of acoustic
phonons and impurities which results in a complex temperature
and density dependence of the mobility.46 In this context
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FIG. 1. (Color online) Top: Illustration of acoustic phonon scat-
tering in the K,K ′ valleys of the Brillouin zone showing the phase
space available for scattering below and above the Bloch-Grüneisen
temperature TBG. The part of the hexagonal Brillouin zone marked by
the gray-shaded box indicates the plotting range for the contour plots
in Fig. 2. Bottom: Lattice and primitive unit cell of 2D hexagonal
MoS2.

previous studies have emphasized the importance of including
both the TA and LA phonon in order to obtain good agreement
with experiment.31 With the present work we uncover new
important aspects of the acoustic el-ph interaction and how
it is affected by carrier screening. These are issues of
high relevance for the understanding of acoustic phonon
limited 2DEG mobilities in semiconductors and, in particular,
monolayers of transition metal dichalcogenides.

The paper is organized as follows. Section II briefly
summarizes the Boltzmann transport theory for acoustic
phonon scattering. In Sec. III the first-principles results for
the acoustic electron-phonon (el-ph) interaction are presented
and the deformation potential and piezoelectric interactions are
discussed in closer detail along with a microscopic description
of carrier screening. Finally, the results for temperature and
density dependence of the acoustic phonon limited mobility
are presented in Sec. IV.

II. BOLTZMANN THEORY

Two-dimensional MoS2 has a hexagonal lattice structure
like graphene with the bottom of the conduction band residing
in the K,K ′ points at the corners of the Brillouin zone.47,48

The two K,K ′ valleys are perfectly isotropic with an effective
electron mass of m∗ = 0.48me.26 The satellite valleys located
at the �-K path inside the Brillouin zone are well separated in
energy from the K,K ′ valleys and therefore not important for
the low-field transport properties.26,48 The conduction band
spin splitting of a few meV due to the intrinsic spin-orbit
interaction in 2D transition metal dichalcogenides48,49 can be
safely neglected here. At the same time we note that a Rashba-
type spin-orbit interaction can affect the phonon-limited 2DEG
mobility.50,51

In Boltzmann theory, the drift mobility μxx = σxx/ne,
where σxx is the conductivity, is in the presence of (quasi)
elastic scattering given by the Drude-like expression52

μxx = e〈τk〉
m∗ , (2)

where τk is the energy-dependent relaxation time and the
energy-weighted average 〈·〉 is defined by

〈A〉 = 1

n

∫
dεkρ(εk)εkA(εk)

(
− ∂f

∂εk

)
. (3)

Here, n is the two-dimensional carrier density, ρ =
gsgvm

∗/2πh̄2 is the density of states in 2D, gs = 2
and gv = 2 are the spin and valley degeneracy, re-
spectively, εk = h̄2k2/2m∗ is the carrier energy, f (εk) =
{1 + exp [(εk − μ)/kBT ]}−1 is the equilibrium Fermi-Dirac
distribution function, and μ is the chemical potential. For a
degenerate electron gas, only scattering within a shell of width
kBT around the Fermi level is relevant and μxx ≈ eτkF

/m∗
applies.

In valley-degenerate semiconductors scattering in inequiv-
alent valleys is not necessarily identical. In such cases
the Boltzmann equation must be solved explicitly in all
inequivalent valleys. In the absence of intervalley scattering
this amounts to replacing the relaxation time in (2) with
a valley-averaged relaxation time: τ = ∑

v τv/Nv , where v
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denotes the valley index, Nv is the number of inequivalent
valleys, and τv denotes the individual valley relaxation times.

For acoustic phonon scattering, which to a good
approximation can be treated as a quasielastic scattering
process, the relaxation time for the individual acoustic
phonons is given by26,52

1

τλ(εk)
=

∑
k′

(1 − cos θkk′) P λ
kk′

1 − fk′

1 − fk
, (4)

where λ denotes the branch index (λ =TA, LA), θkk′ is the
scattering angle, and fk = f (εk) is understood. The transition
matrix element is given by

P λ
kk′ = 2π

h̄

∣∣∣∣ gλ
kq

ε(q,T )

∣∣∣∣2

[Nqλδ(εk′ − εk − h̄ωqλ).

+ (1 + Nqλ)δ(εk′ − εk + h̄ωqλ)], (5)

where q = k′ − k, gλ
kq is the el-ph coupling, ε(q,T ) is the

wave vector and temperature dependent static dielectric
function of the 2DEG, and h̄ωqλ = h̄cλq is the acoustic
phonon energy. The phonons are assumed to be in equilibrium
and populated according to the Bose-Einstein distribution
function Nqλ = N (h̄ωqλ).

Screening of the el-ph interaction by the carriers themselves
is accounted for by the dielectric function ε(q,T ). As we here
show, the presence of both normal and umklapp processes
in the acoustic deformation potential interaction requires a
microscopic description of carrier screening. The consequence
of this is a central result of this work, and will be discussed in
further detail in Sec. III C.

In the present work the expression for the relaxation time
in Eq. (4) is evaluated numerically assuming quasielastic
scattering; i.e., the phonon energies are omitted in the δ

functions of Eq. (5) (implying q = 2k sin θkk′/2) but included
in the Fermi function fk′ = f (εk ± h̄ωqλ) of Eq. (4). This is
particularly important in the BG regime where the phonon
energy becomes comparable to the thermal smearing at the
Fermi level; i.e., h̄ωqλ ∼ kBT .

III. INTERACTION WITH ACOUSTIC PHONONS

In the following, we present first-principles calculations
of the el-ph interaction in 2D MoS2 obtained with the
density functional based method outlined in Ref. 26 and
implemented in the GPAW electronic structure package.53–55 As
a complement to our first-principles calculations, we calculate
in Appendix B the acoustic el-ph interaction in 2D materials
using an elastic continuum model.

A. First-principles calculations

The interaction with the acoustic phonons can be written in
the general form

gλ
kq =

√
h̄

2Aρωqλ

Mλ
kq, (6)

where A is the area of the sample, ρ is the mass density, Mλ
kq =

〈k + q|δVqλ|k〉 is the matrix element between the Bloch states
with wave vectors k and k + q, and δVqλ is the change in
the crystal potential due to a phonon with wave vector q and
branch index λ. The couplings in the K,K ′ valleys are related

Deformation potential interaction

Piezoelectric interaction

Relative phase φ

0.2

0.1

−0.1

−0.2−0.2 −0.1 0.0 0.1 0.2

0.0

0.2

0.1

−0.1

−0.2−0.2 −0.1 0.0 0.1 0.2

0.0

0.2

0.1

−0.1

−0.2−0.2 −0.1 0.0 0.1 0.2

0.0

0.2

0.1

−0.1

−0.2−0.2 −0.1 0.0 0.1 0.2

0.0

0.2
TA LA

TA LA

TA LA

0.1

−0.1

−0.2−0.2 −0.1 0.0 0.1 0.2 0 0

0.0

0.2

0.1

−0.1

−0.2−0.2 −0.1 0.0 0.1 0.2

0.0

0.9

0.6

0.3

0.0

1.5

1.0

0.5

0.0

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

⎪⎪

qx [2π/a] qx [2π/a]

qx [2π/a]

π

π
2

π
2––

π

qx [2π/a]

qx [2π/a]

q y
 [
2π

/a
]

q y
 [
2π

/a
]

q y
 [
2π

/a
]

q y
 [
2π

/a
]

eV
/A

ng

eV
/A

ng

eV
/A

ng

eV
/A

ng

q y
 [
2π

/a
]

q y
 [
2π

/a
]

qx [2π/a]

FIG. 2. (Color online) Calculated deformation potential and
piezoelectric interactions in the K valley of the conduction band
in monolayer MoS2. The contour plots show the absolute value of
the calculated coupling matrix elements M

DP/PE
qλ at k = K for the TA

(left) and LA (right) phonons as a function of the two-dimensional
phonon wave vector q. The absolute value of the relative phase φ

between the two interactions [see Eq. (8)] is shown in the bottom
plots.

through time-reversal symmetry as |MK
qλ| = |MK ′

−qλ|. As the
hexagonal lattice of two-dimensional MoS2 lacks a center of
symmetry, charge carriers in monolayer MoS2 interact with
acoustic phonons through both the deformation potential and
the piezoelectric interaction. The coupling matrix element
therefore has contributions from both coupling mechanisms;
i.e.,

Mqλ = MDP
qλ + MPE

qλ . (7)

The two coupling mechanisms are often assumed to be
out of phase; i.e., one is real and the other imaginary56

(see also Appendix B). This implies that piezoelectric and
deformation potential interactions do not interfere in lowest-
order perturbation theory, i.e., |Mqλ|2 = |MDP

qλ + MPE
qλ |2 =

|MDP
qλ |2 + |MPE

qλ |2, and can therefore be treated as separate
scattering mechanisms.

In Fig. 2 we show our first-principles results for the
deformation potential and piezoelectric interactions with the
TA and LA phonons in 2D MoS2 for k = K.57 The two
coupling mechanisms have been obtained from the total
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coupling matrix element in Eq. (7) using the real-space
partitioning scheme outlined in Appendix C 1. The scheme is
based on the observation that the deformation potential is short
range while the piezoelectric interaction is long range, and can
therefore be separated in real space. While the deformation
potential couplings have the threefold rotational symmetry
of the conduction band in the vicinity of the K,K ′ points,
the sixfold rotational symmetry of the piezoelectric couplings
stems from the hexagonal crystal lattice.

The interference between the deformation potential and
piezoelectric interaction can be inferred from the relative phase
φ between their complex-valued matrix elements,

φ = Im
[

ln
(
MPE

qλ

/
MDP

qλ

)]
. (8)

The absolute value of the relative phase is shown in the bottom
row of Fig. 2. At long wavelengths, we find that the above-
mentioned out-of-phase property (φ = π/2) holds for the LA
phonon only. For the TA phonon the two coupling mechanisms
interfere (φ = 0,π ) and must hence be considered together.
Deviations from this behavior occur at short wavelengths
where the strictly transverse and longitudinal character of the
TA and LA phonons vanishes. However, for long-wavelength
acoustic phonon scattering, the interaction with the TA and
LA phonons is given by fully interfering and noninterfering
couplings, respectively.

1. Normal and umklapp contributions

In order to gain further understanding of the deformation
potential interaction, we here quantify the contributions from
normal and umklapp processes. Formally, the two are asso-
ciated with terms in the Fourier expansion of the short-range
phonon-induced change in the crystal potential,

δVqλ(r) =
∑

G

ei(q+G)·rδV λ
q+G, (9)

with G = 0 and G 	= 0 for normal and umklapp processes,
respectively (G is a reciprocal lattice vector; see also Ap-
pendix C 2). Since the coupling to the TA phonon vanishes
when umklapp processes are neglected altogether,58 they
are essential for a correct description of the acoustic el-ph
interaction.

In Fig. 3 we show the normal and umklapp contributions to
the acoustic deformation potential interactions obtained with
the Fourier filtering method outlined in Appendix C 2. The
plots show the absolute value of the q-direction average of the
matrix element

M
DP,X
qλ = 〈k + q|δV X

qλ|k〉, X = N,U, (10)

where δV X
qλ denotes the phonon-induced potential with normal

(N ) and umklapp (U ) processes included, respectively. Due
to the complex-valued matrix elements, the absolute values
of the normal and umklapp contributions do not add up to
the total matrix element. In accordance with the statement
below Eq. (9), we find that in the long-wavelength limit the
deformation potential interactions for the TA and LA phonons
are completely dominated by umklapp and normal processes,
respectively. At shorter wavelengths both processes contribute.

The separation of the deformation potential interaction into
contributions from normal and umklapp processes is not only

0.0
0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

0.0
0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8
Total

TA LA

Normal
Umklapp

Total
Normal
Umklapp

q [2π/a] q [2π/a]

[e
V

/A
ng

]
D

P
q

M

[e
V

/A
ng

]
D

P
q

M

FIG. 3. (Color online) Normal and umklapp contributions to the
deformation potential interaction for the TA (left) and LA (right)
phonon. The plots show the angular average of the deformation
potential interactions in Fig. 2 and their contributions from normal
and umklapp processes given by Eq. (10) (full lines). The dashed
lines show the analytic deformation potential interaction in Eq. (11).

of technical character. As we show below in Sec. III C, it has
important consequences for the screening of the deformation
potential interaction.

B. Analytic expressions for the acoustic el-ph interaction

In the following, the analytic expressions for the de-
formation potential and piezoelectric couplings obtained in
Appendix B are introduced and the coupling strengths are
determined from the first-principles el-ph couplings.

1. Deformation potential interaction

The deformation potential originates from the local changes
of the crystal potential caused by the atomic displacements due
to an acoustic phonon. The determination of the interaction
strength thus requires a microscopic calculation, such as the
first-principles approach used in this work.

The interaction with acoustic phonons via the deformation
potential interaction is most commonly assumed to be isotropic
and linear in the phonon wave vector, i.e.,∣∣MDP

qλ

∣∣ = �λq, (11)

where �λ is the acoustic deformation potential.56 Since the true
deformation potential couplings in Fig. 2 are anisotropic and
show a more complex q dependence at shorter wavelengths,
the deformation potential of Eq. (11) must be regarded as an
effective coupling parameter. In valley-degenerate semicon-
ductors where the couplings in the different valleys are related
through time-reversal symmetry, the effective deformation
potential furthermore accounts for the variation in the angular
dependence of the coupling between inequivalent valleys. We
have here recalculated the acoustic deformation potentials
from Ref. 26 in order to avoid undesired contributions from the
piezoelectric interaction that potentially were included there.
The new deformation potentials are given in Table I and the
couplings are shown in Fig. 3 (dashed lines) together with the
angular average of the first-principles couplings.

For deformation potential scattering above the BG tempera-
ture where the equipartition approximation Nq ∼ kBT/h̄ωq 

1 applies and with screening neglected, the relaxation time
in Eq. (4) becomes independent of the carrier energy and is
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TABLE I. Material parameters for monolayer MoS2 used in the
present work. Apart from the acoustic deformation potentials and
the piezoelectric constant all parameters have been adopted from
Ref. 26.

Parameter Symbol Value

Lattice constant a 3.14 Å
Ion mass density ρ 3.1 × 10−7 g/cm2

Effective electron mass m∗ 0.48 me

Transverse sound velocity cTA 4.2 × 103 m/s
Longitudinal sound velocity cLA 6.7 × 103 m/s
Acoustic deformation potentials
TA �TA 1.5 eV
LA �LA 2.4 eV
Piezoelectric constant e11 3.0 × 10−11 C/m
Effective layer thickness σ 5.41 Å

given by26

1

τλ(εk)
= m∗�2

λkBT

h̄3ρc2
λ

. (12)

This results in a μ ∼ T −1 temperature dependence of the
2DEG mobility characteristic of acoustic deformation poten-
tial scattering in the high-temperature regime.

2. Piezoelectric interaction

Piezoelectric coupling to acoustic phonons occurs in
crystals lacking an inversion center and originates from the
macroscopic polarization that accompanies an applied strain
εij . The strength of the interaction is given by the piezoelectric
tensor eij here given in Voigt notation.

In Appendix B 2 we obtain the piezoelectric interaction in
a 2D hexagonal lattice using continuum theory. We find that
the piezoelectric interaction is given by∣∣MPE

qλ

∣∣ = e11e

ε0
q × erfc(qσ/2)|Aλ(q̂)|, (13)

where e11 (units of C/m) is the only independent component
of the piezoelectric tensor of the 2D hexagonal lattice,59

ε0 is the vacuum permeability, erfc is the complementary
error function, σ is an effective width of the electronic wave
functions, and Aλ(q̂) is an anisotropy factor that accounts for
the angular dependence of the piezoelectric interaction. It is
given by

ATA(q̂) = − sin 3θq and ALA(q̂) = cos 3θq (14)

for the TA and LA phonon, respectively, and results in a highly
anisotropic piezoelectric interaction.

The first-principles results for the piezoelectric interaction
in Fig. 2 are in overall good agreement with the analytic
expression in Eq. (13) (see also Figs. 8 and 10).60 From a
fit to the first-principles results, the piezoelectric constant of
2D MoS2 is estimated to be e11 ∼ 3.0 × 10−11 C/m (∼0.01
e/bohr). This is an order of magnitude smaller than a recently
reported value (e11 = 3.06 × 10−10) obtained with a Berry’s
phase approach.61 We are at present, however, not able to
clarify the origin of this disagreement.

The q dependence of the 2D piezoelectric interaction in
Eq. (13) is qualitatively different from the one in 3D bulk

systems where MPE
qλ ∼ constant.56 In the long-wavelength

limit where erfc(qσ/2) ∼ 1 − qσ/
√

2π , the 2D piezoelectric
interaction acquires a linear q dependence MPE

qλ ∼ q. Hence,
the deformation potential and piezoelectric interaction in a 2D
lattice behave qualitatively the same in the long-wavelength
limit. Assuming that the linear long-wavelength behavior
holds, the high-temperature relaxation time for piezoelectric
scattering is given by Eq. (12) with the replacement

�2
λ → 1

2

(
e11e

ε0

)2

, (15)

where the factor 1/2 = 〈A2
λ〉 stems from the angular mean

of the piezoelectric interaction.62 This corresponds to an
effective isotropic piezoelectric coupling with Aλ(q̂) = 1/

√
2

in Eq. (13). The relative strength of the deformation potential
and piezoelectric interactions is thus governed by the ratio
(e11e/ε0)/�λ of the prefactors in Eqs. (11) and (13). Since
this is of the order of unity with the parameters for 2D MoS2

listed in Table I, both coupling mechanisms must be taken into
account.

C. Screening of the acoustic el-ph interaction

The first-principles el-ph interactions presented above have
been obtained for the neutral material and therefore do not
take into account screening by the 2DEG in extrinsic 2D
MoS2. In the following we apply a microscopic theory for
carrier screening and show that the normal and umklapp
contributions to the deformation potential interaction are
screened differently.

Formally, the screened el-ph interaction can be obtained
by replacing the phonon-induced potential δVqλ in the matrix
element Mλ

kq of Eq. (6) with its screened counterpart

δV scr
qλ (r) =

∫
dr′ε−1(r,r′)δVqλ(r′), (16)

where ε−1 is the (static) microscopic dielectric function of the
2DEG. Inserting (9), this can be recast in Fourier space in
terms of the q-dependent dielectric matrix ε−1

GG′
63 as

δV scr
qλ (r) =

∑
G

ei(q+G)·r ∑
G′

ε−1
GG′(q)δV λ

q+G′

�
∑

G

ei(q+G)·rε−1
GG(q)δV λ

q+G, (17)

where G and G′ are reciprocal lattice vectors and the
second equality holds in the diagonal approximation ε−1

GG′ =
δGG′ε−1

GG. To a good approximation, the screened phonon-
induced potential thus follows by multiplying the Fourier
components in Eq. (9) by the diagonal components ε−1

GG of
the inverse dielectric matrix. The latter is related to the 2DEG
polarizability χ0

GG(q) through the expression63

εGG(q) = 1 − e2

2ε0|q + G|χ
0
GG(q), (18)

which is similar to the standard long-wavelength expression
for the dielectric function in Eq. (19) below, however, with
the important difference that the denominator in the second
term of Eq. (18) contains a factor |q + G| instead of a factor
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q. For intravalley scattering where q  |G|, this implies that
εGG(q) behaves differently at long (G = 0) and short (G 	= 0)
wavelengths; while it diverges as 1/q in the q → 0 limit in
the former case, it approaches a finite value in the latter. As
an immediate consequence, normal and umklapp components
of the el-ph interaction are renormalized differently with a
significantly stronger screening of the former.

While a correct description of the screened el-ph interaction
can only be obtained from Eq. (17), the calculation of
the microscopic dielectric function from first principles is,
however, beyond the scope of the present study. Instead, we
adopt the following ad hoc approach to carrier screening.

1. Effective screening scheme

In order to account for the qualitative difference in the
screening of normal and umklapp processes, the dielectric
function of the 2DEG in Eq. (18) is approximated as follows.

For the long-wavelength component (G = 0) of the di-
electric function, well-established approximations exist in the
literature.64 We here apply the finite-temperature RPA theory
due to Maldague,65

ε(q,T ,μ) = 1 − e2

2ε0q
χ0(q,T ,μ), (19)

where μ is the chemical potential and the static polarizability
at finite temperatures is obtained as

χ0(q,T ,μ) =
∫ ∞

0
dμ′ χ0(q,0,μ′)

4kBT cosh2 μ−μ′
2kBT

. (20)

Here, χ0(q,0,μ) is the zero-temperature RPA polarizability
given by the density of states χ0(q,0,μ) = −ρ for q < 2kF

(see also Appendix A).64 The integral in Eq. (20) is evaluated
numerically using the approach of Ref. 66. We have here
neglected the form factor in the polarizability arising from
the finite thickness of the electronic Bloch functions. First-
principles calculations of the RPA dielectric function (see, e.g.,
Refs. 63,67) could be helpful in clarifying to which extent this
leads to an overestimation of the screening strength.

For the short-wavelength part (G 	= 0) of the dielectric
function, we introduce an effective dielectric constant εeff

which acts as a simple scaling parameter for the G 	= 0
components of the potential in Eq. (17). From the relations
|G| � qTF 
 e2/2ε0|χ0

GG|, where qTF is the Thomas-Fermi
screening wave vector (see Appendix A) and the latter
inequality follows from the expression for the microscopic
polarizability,63 we observe that the short-wavelength screen-
ing efficiency is relatively weak; i.e., εGG ∼ 1. We can
hence to a good approximation set εeff = 1 thus leaving the
umklapp contribution to the deformation potential interaction
unscreened.

2. Total screened el-ph couplings

With our findings above, the screened matrix element for
the acoustic el-ph interaction can be written as

Mscr
qλ (n,T ) = M

DP,N
qλ

ε(q,T ,μ)
+ M

DP,U
qλ

εeff
+ MPE

qλ

ε(q,T ,μ)
. (21)

Here, the normal contribution to the deformation poten-
tial interaction and the long-range piezoelectric interaction
are screened by the long-wavelength dielectric function in
Eq. (19), while the umklapp contribution to the deformation
potential interaction is screened by εeff . It should be noted that
this differs from conventional descriptions of the screened
acoustic el-ph interaction where the deformation potential
interaction is either screened with a long-wavelength dielectric
function or left unscreened (see, e.g., Refs. 52,68).

As the deformation potential interactions for the TA and
LA phonons are largely dominated by umklapp and normal
processes, they can to a good approximation be screened by
εeff and ε in Eq. (19), respectively, thus leaving the deformation
potential interaction for the TA phonon unscreened. Taking
into account the interference between the deformation poten-
tial and piezoelectric interaction, we can hence approximate
the coupling matrix elements for the TA and LA phonon as

Mscr
qTA(n,T ) ≈ MDP

qTA

εeff
+ MPE

qTA

ε(q,T ,μ)
(22)

and

Mscr
qLA(n,T ) ≈ i

MDP
qLA

ε(q,T ,μ)
+ MPE

qLA

ε(q,T ,μ)
, (23)

respectively, where M
DP/PE
qλ are given by Eqs. (11) and (13).

3. Efficiency of long-wavelength screening

In the following we provide a qualitative estimate of the
efficiency of long-wavelength carrier screening given by the
dielectric function in Eq. (19). The screening strength is in this
case governed by the dimensionless parameter

qs(T ) = qTF(T )

q̃(T )
, (24)

where qTF(T ) is the finite-temperature Thomas-Fermi wave
vector and q̃ denotes a typical scattering wave vector. In the
case of acoustic phonon scattering q̃ is given by

q̃ =
{

min(kF ,qth), T � TF ,

min(kavg,qth), T � TF ,
(25)

in the degenerate (T � TF ) and nondegenerate (T � TF )
regime, respectively, and where TF is the Fermi temperature.
Here qth = kBT/2h̄cph is a typical scattering wave vector in
the BG regime where the accessible phase space is restricted
by the availability of thermally excited phonons. Above the
BG temperature where scattering on the full Fermi surface
is possible, kF becomes a typical scattering wave vector. In
the case of a nondegenerate 2DEG where the average carrier
energy is 〈εk〉 = kBT , kavg =

√
2m∗kBT/h̄2 is a typical wave

vector.
In the low-temperature limit, the screening parameter for

acoustic phonon scattering is given by

qs(T → 0) ≈ qTF

qth
= gsgve

2m∗cph

2πε0h̄kBT
, (26)

which is independent of the carrier density. The T −1 diver-
gence of the low-temperature screening parameter implies that
scattering of acoustic phonons via normal process deformation
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FIG. 4. (Color online) Temperature and density dependence of
the dimensionless screening parameter qs(T ) in Eq. (24) for acoustic
phonon (full lines) and charged impurity (dashed lines) scattering in
2D MoS2.

potential and piezoelectric interaction is strongly suppressed
for a degenerate 2DEG in the BG regime.

It is interesting to compare this with the screening parameter
for charged impurity scattering. In this case, scattering on the
full Fermi surface is possible at low temperatures. Hence,
q̃ = kF/avg in the degenerate/nondegenerate regime and the
low-temperature limit of the screening parameter becomes

qs(T → 0) ≈ qTF

kF

= (gsgv)3/2e2m∗

4πε0h̄
2
√

4πn
, (27)

which is independent of temperature and decreases with the
carrier density. This results in a less efficient screening of
impurity scattering compared to acoustic phonon scattering at
high densities and low temperatures.

The full temperature dependence of the screening parameter
for scattering of acoustic phonons (full lines) and impurities
(dashed lines) is shown in Fig. 4 for different carrier densities
and cph = 5 × 103 m/s representative of the acoustic sound
velocities in 2D MoS2. In the low temperature regime, the
limits in Eqs. (26) and (27) are approached. Due to the density
and temperature dependence of the Debye-Hückel wave vec-
tor, qD ∝ n/kBT , the screening strength becomes independent
of the scattering mechanism and increases (decreases) with
the carrier density (temperature) in the nondegenerate high-
temperature regime.

The overall large values of the screening parameter
[qs(T ) 
 1] in Fig. 4 follow from a large effective mass
and valley degeneracy. Carrier screening in monolayer MoS2

and other 2D transition metal dichalcogenides is therefore
inherently strong and the screening strength exceeds that of,
e.g., Si and GaAs based 2DEGs4. For scattering of acoustic
phonons this has the important consequence that normal
process deformation potential and piezoelectric interaction
is strongly reduced already at relative low carrier densities
n � 1011 cm−2.

IV. RESULTS

In the following we use the Boltzmann equation approach
outlined in Sec. II to study the temperature and density
dependence of the acoustic phonon limited mobility in 2D
MoS2 for temperatures T < 100 K and high carrier densities
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FIG. 5. (Color online) Scattering rate for deformation potential
(dashed lines) and piezoelectric (full lines) interaction in 2D MoS2 at
temperatures T = 10 K and T = 50 K and carrier densities n = 1011

cm−2 (left) and n = 1013 cm−2 (right). This corresponds to Fermi
energies of EF ≈ 0.25 meV and EF ≈ 25 meV, respectively. In the
right plot, the BG temperature is TBG ≈ 36 (57) K for the TA (LA)
phonon. At T = 10 K, the dip in the scattering rate that appears at
the Fermi energy is a clear fingerprint of Bloch-Grüneisen physics.

1010 to 3 × 1013 cm−2. The mobility limited by scattering of
acoustic phonons follows a generic temperature dependence
μ ∼ T −γ where the exponent γ depends on temperature,
carrier density, and the dominating scattering mechanism. The
same holds for the resistivity ρ = (neμ)−1 with a change in
the sign of the exponent.

In order to establish the relative strength of deformation
potential and piezoelectric scattering in 2D MoS2, we start
by considering the scattering rate given by the expression for
the inverse relaxation time in Eq. (4) with the replacement
(1 − cos θkk′) → 1. Figure 5 shows energy dependence of
the individual scattering rates due to deformation potential
(dashed lines) and piezoelectric (full lines) scattering for
carrier densities n = 1011 cm−2 (left) and n = 1013 cm−2

(right) and temperatures T = 10 K and T = 50 K. With the
Fermi temperature given by TF ≈ 29 ñ K (EF ≈ 2.5 ñ meV),
the two plots correspond to a nondegenerate and degenerate
carrier distribution, respectively. The BG temperatures for the
TA and LA phonons are in the two plots: (left) < 10 K, and
(right) ∼36 K and ∼57 K, respectively.

In the nondegenerate regime shown in the left plot of
Fig. 5, carrier screening is weak implying that deformation
potential and piezoelectric scattering are of the same order of
magnitude. At low energies, however, deformation potential
scattering of the LA phonon and piezoelectric scattering
are strongly screened and unscreened deformation potential
scattering of the TA phonon dominates the scattering rate. The
saturation of the piezoelectric scattering rate at high energies
is a consequence of the nonmonotonic q dependence of the
matrix element in Eq. (13) (see also Fig. 10).

In the degenerate high-density regime shown in the right
plot of Fig. 5, carrier screening is so strong that the piezo-
electric scattering rate is diminished by almost three orders
of magnitude relative to the low-density scattering rate (note
the scaling factor in the legend of the right plot in Fig. 5).
In this regime, unscreened deformation potential scattering of
the TA phonon therefore completely dominates. The dip in the
scattering rate that develops at the Fermi level with decreasing
temperature is a signature of transport in the BG regime. In
this temperature regime the freezing out of short-wavelength
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FIG. 6. (Color online) Acoustic phonon limited mobility vs
temperature. Top: Mobility vs temperature for different carrier
densities. Bottom: Temperature dependence of the exponent γ in
μ ∼ T −γ for the same set of carrier densities. The dots mark the BG
temperatures of the TA (•) and LA (◦) phonons, respectively.

acoustic phonons and the sharpening of the Fermi surface
strongly limit the phase space available for acoustic phonon
scattering resulting in a strong suppression of scattering at the
Fermi level.

Next, we consider the temperature and density dependence
of the mobility. Due to the strong anisotropy of the piezoelec-
tric interaction, the mobility in 2D MoS2 is slightly anisotropic.
Along the different high-symmetry directions of the hexagonal
lattice we find that the variation in the mobility is less than
∼10%. In the following we shall focus on a single direction of
the applied electric field.69

The temperature dependence of the mobility is shown in
Fig. 6 for carrier densities 1010 to 3 × 1013 cm−2 correspond-
ing to BG temperatures up to ∼62 K (∼99 K) for the TA
(LA) phonon. Both the mobility (upper) and the exponent
γ = −d log μ/d log T (lower) of its power-law dependence
μ ∼ T −γ are shown. At the lowest densities the characteristic
temperatures TBG and TF are comparable while TF > TBG

for n � 1012 cm−2. As a consequence, the crossover to the
high-mobility BG regime at T ∼ TBG, marked by the dots in
the lower plot, appears clearly for all carrier densities.

In the high-temperature regime T � TBG, the mobility
shows an approximate linear temperature dependence with
1 � γ � 1.5. This is in good agreement with the individual
high-temperature limits for unscreened deformation potential
and piezoelectric scattering which we find to be γ = 1 and
γ � 1, respectively. At the lowest carrier densities, the larger
value of γ ∼ 1.5 appearing at T > TBG originates from
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FIG. 7. (Color online) Acoustic phonon limited mobility vs
carrier density for temperatures T = 4, 20, 50 K. The dots mark the
quantum-classical crossover from a nondegenerate to a degenerate
carrier distribution at T = TF .

the temperature dependence of the dielectric function for a
nondegenerate carrier distribution.

In the low-temperature BG regime T < TBG, a stronger
temperature dependence with 1 < γ � 4 appears and the
mobility approaches a μ ∼ T −4 limiting behavior at T  TBG.
Numerically, we find that the γ = 4 limiting behavior is
characteristic of unscreened deformation potential scattering.
Screened deformation potential and piezoelectric scattering
share the same γ = 6 limit due the identical long-wavelength
limits of their respective couplings in Eqs. (11) and (13).
The mobility at T  TBG is thus completely dominated by
unscreened deformation potential scattering of the TA phonon.
Our findings for the low-temperature limits of the mobility
due to scattering of 2D phonons differ from the usual low-
temperature limits of the 2DEG mobility with scattering of
bulk 3D phonons in heterostructures. In this case, the limits
are given by γ = 5 for unscreened deformation potential
scattering and γ = 7 and γ = 5 for screened deformation
potential and piezoelectric scattering, respectively.30,31 As the
low-temperature limits of the mobility are only realized deep
inside the BG regime T  TBG, they may, however, be difficult
to observe experimentally.

In Fig. 7 we show the calculated density dependence
of the mobility for temperatures T = 4, 20, 50 K. In the
nondegenerate low-density regime, the density dependence of
Debye-Hückel screening results in a mobility that increases
with the density. For the lowest temperature where carrier
screening becomes strong, unscreened deformation potential
scattering of the TA phonon dominates the mobility resulting
in a weaker density dependence. The same holds for densities
in the vicinity of the quantum-classical crossover at T ∼
TF (marked by dots in Fig. 7) where the mobility shows
almost no density dependence. In the degenerate high-density
regime, the mobility approaches a μ ∼ n1.5 behavior at low
temperatures. The strong density dependence of the mobility
in this regime can be ascribed to two factors: (i) a Fermi
velocity that increases with the carrier density as vF ∼ √

n, and
(ii) transport in the Bloch-Grüneisen regime where the scat-
tering rate for fixed temperature T decreases with the density.
The latter is a consequence of a reduction in the fraction of
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the Fermi surface that is probed by acoustic phonon scattering
when the density (Fermi wave vector) increases.

We end by briefly commenting on the applicability of the
expression 1/μ = 1/μ0 + αT often used to fit experimental
mobilities31,39,52 in the linear high-temperature regime. Here,
μ0 is the residual mobility due to, e.g., impurity scattering and
α is the density-dependent slope of the linear temperature
dependence. In Fig. 6 it is seen to apply at T > TBG

except for the lowest densities where the inverse mobility
becomes slightly nonlinear. From the density dependence
of the mobility in Fig. 7 we conclude that the temperature
coefficient α is a monotonically decreasing function of the
carrier density.

V. CONCLUSIONS

In this work we have combined analytic and first-principles
calculations of the el-ph interaction with a semianalytic solu-
tion of the Boltzmann equation to study the temperature and
density dependence of the acoustic phonon limited mobility
in 2D n-type MoS2. The acoustic deformation potentials for
the TA and LA phonons and the piezoelectric constant in 2D
MoS2 were extracted from the first-principles el-ph interaction
and from a microscopic description of carrier screening it
was shown that the umklapp contribution to the deformation
potential interaction is not affected by screening.

Due to strong screening of deformation potential scattering
of the LA phonon and piezoelectric scattering of both the TA
and LA phonon, the mobility was found to be dominated by
unscreened deformation potential scattering of the TA phonon
at high densities. At low carrier densities 1010–1011 cm−2

deformation potential and piezoelectric scattering were found
to be comparable. For T < 10 K and moderate to high carrier
densities n � 1011 cm−2, intrinsic mobilities in excess of
105 cm2 V−1 s−1 were predicted. At temperatures T ∼ 100 K,
the acoustic phonon limited mobility does not exceed ∼ 7 ×
103 cm2 V−1 s−1. In the low-temperature BG regime T  TBG,
the mobility acquires a μ ∼ T −4 dependence characteristic of
unscreened deformation potential scattering of 2D phonons.
The mobility was furthermore found to increase monotonically
with the carrier density. Similar conclusions can be expected to
hold for monolayers of other transition metal dichalcogenides
which have similar atomic and electronic structures.

Apart from our findings for the mobility, we here list a
few other key results of our work: (i) In the long-wavelength
limit the acoustic deformation potential interactions for the
TA and LA phonons were found to be completely dominated
by umklapp and normal processes, respectively; (ii) from
a microscopic treatment of carrier screening we showed
that normal and umklapp processes in the el-ph interaction
are screened differently, and that the deformation potential
interaction with the TA phonon to a good approximation
can be left unscreened; (iii) our further developments for
first-principles calculations of the el-ph interaction included
in Appendix C.

As a final remark, we note that our conclusion regarding
the screening of the acoustic el-ph interaction can be verified
experimentally. For a purely long-wavelength treatment of
carrier screening, we find that the theoretically predicted
mobility is substantially higher and shows a much richer

temperature dependence with higher values of γ and no linear
temperature dependence (see also Ref. 46). Experimental
low-temperature mobility data on high-mobility monolayer
MoS2 samples matching the predictions of this work will hence
provide strong support for our findings. As our findings for
the acoustic el-ph interaction must be expected to be relevant
in other semiconductors, we believe that the present study
is of high importance for an improved understanding of the
acoustic el-ph interaction and phonon-limited mobilities in
semiconductor-based 2DEGs.
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APPENDIX A: 2D THOMAS-FERMI SCREENING

In the Thomas-Fermi (TF) approach to screening, the
finite-temperature dielectric function of a 2DEG is in the
long-wavelength limit given by64

ε(q,T ) = 1 + qTF(T )

q
, (A1)

where

qTF(T ) = qTF

[
1 − exp

(−EF

kBT

)]
(A2)

is the temperature-dependent screening wave vector, qTF =
e2/(2ε0)ρ the zero-temperature TF wave vector, ρ =
gsgvm

∗/2πh̄2 the constant density of states in 2D, and
EF = n/ρ the Fermi level. This reproduces the RPA and
Debye-Hückel results

qTF(T → 0) = qTF, (A3)

qTF(T → ∞) = qD = ne2

2ε0kBT
(A4)

for the screening wave vector in the low- and high-temperature
limits, respectively.

In a degenerate 2DEG, Thomas-Fermi screening overesti-
mates the screening strength at q > 2kF where 2DEG screen-
ing becomes less efficient. RPA corrections to the dielectric
function are required to cure this problem.64 However, for
quasielastic scattering with q � 2kF , TF theory provides a
good approximation to the dielectric function.

APPENDIX B: CONTINUUM THEORY FOR THE
ACOUSTIC el-ph INTERACTION IN 2D MATERIALS

In this Appendix, we calculate the acoustic el-ph interaction
in 2D materials using continuum theory. For this purpose,
the electronic states are described by plane-wave solutions
ψk(r) = 1/

√
Aχk(z)eik·r‖ where A is the area of the sample,

k is the two-dimensional electronic wave vector, r = (r‖,z),
and χk(z) is the normalized envelope of the electronic wave
functions accounting for its confinement in the direction
perpendicular to the material layer.
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The Hamiltonian for the el-ph interaction takes the usual
form

Hel-ph =
∑
kqλ

gλ
kqc

†
k+qck(a†

qλ + a−qλ), (B1)

where q = (qx,qy) is the two-dimensional phonon wave vec-
tor, λ is the acoustic branch index, and gλ

kq = √
h̄/2AρωqλM

λ
kq

is the coupling constant. In the following, the matrix element
Mλ

kq is obtained by applying an elastic continuum model for
the acoustic phonons.

In a lattice without an inversion center, the acoustic el-ph
is a sum of deformation potential (DP) and piezoelectric (PE)
interactions. The unscreened el-ph interaction which couples
to the carrier density is in real space given by56,58

Hel-ph(r) = HDP(r) + HPE(r) = �∇ · u(r) − eφ(r), (B2)

where u is the displacement field due to the acoustic phonons,
� is the deformation potential, and φ is the electrostatic
potential from the piezoelectric polarization of the lattice.

Considering an isolated 2D material sheet, the in-plane
acoustic phonons can be described by the quantized two-
dimensional displacement field

u(r) =
∑
qλ

uqλ(z)eiq·r‖ , uqλ(z) = êλfq(z)Qqλ, (B3)

where q = (qx,qy) is the two-dimensional phonon wave
vector, êλ is a unit vector describing the polarization of the
acoustic branch λ, fq is the z profile of the displacement field
in the direction perpendicular to the material sheet, and Qqλ =√

h̄/2Aρωqλ(a†
qλ + a−qλ) is the vibrational normal coordinate.

In the long-wavelength limit the polarization vectors for the
TA and LA phonons are perpendicular (êTA ⊥ q) and parallel
(êTA ‖ q) to the phonon wave vector q, respectively, and can
to a good approximation be assumed independent on q.56

With the displacement field written in the form in Eq. (B3),
the Hamiltonian (B2) can be recast as a sum over terms from
the individual phonons,

Hel-ph(r) =
∑
qλ

H
qλ

el-ph(r)

=
∑
qλ

[
H DP

qλ (z) + H PE
qλ (z)

]
eiq·r‖ , (B4)

where H
DP/PE
qλ are to be determined below. The el-ph coupling

constant is given by the matrix element

gλ
kq = ∫

drψ∗
k+q(r)H qλ

el-ph(r)ψk(r)

= ∫
dzχ∗

k+q(z)H qλ

el-ph(z)χk(z). (B5)

In the following, the envelope function χk is assumed inde-
pendent of the electronic wave vector k.

1. Deformation potential interaction

Taking the divergence of the displacement field in Eq. (B3),
the deformation potential interaction is found to be

H DP
qλ (z) = i�q · êλfq(z)Qqλ. (B6)

Because of the dot product between the phonon wave vector
and the polarization vector, the interaction with the TA phonon

vanishes. The coupling matrix element for the LA phonon is
given by

MDP
qλ = i�q, (B7)

where the result of the z integral in Eq. (B5) has been absorbed
in the deformation potential constant. The fact the TA phonon
does not couple illustrates the limitation of the often assumed
form for deformation potential interaction in Eq. (B2) and
underlines the importance of more involved descriptions70

2. Piezoelectric interaction in 2D hexagonal lattices

Piezoelectric interaction with acoustic phonons appears in
lattices which lack a center of symmetry. In this case, the
displacement field u(r) associated with the acoustic phonons
leads to a polarization P of the lattice given by56

Pi =
∑
jk

ei,jkεjk, i,j,k = x,y, (B8)

where

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(B9)

is the strain tensor and e is the tensor of piezoelectric
moduli having symmetry ei,jk = ei,kj . In 2D materials the
piezoelectric coupling has units of C/m (C/m2 in 3D)—the
displacement field can be thought to have a normalized z profile
with units of m−1. For a 2D hexagonal lattice with a basis
there is only one independent piezoelectric component e11

(Voigt notation) which is related to the other nonzero compo-
nents as59

e11 = −e12 = −e26. (B10)

Here, the primitive lattice vectors of the hexagonal lattice have
been chosen as a1,2 = a(

√
3/2, ± 1/2) where a is the lattice

constant.
Expanding the strain tensor as in Eq. (B3), its (q,λ)

components follow directly from Eq. (B9) as

εqλ
xx (z) = iqx êλ,xfq(z)Qqλ, (B11)

εqλ
xy (z) = εyx = i

2

(
qyêλ,x + qxêλ,y

)
fq(z)Qqλ, (B12)

and the associated polarization in Eq. (B8) is given by

P λ
q,x(z) = e11(εxx − εyy)

= ie11(qxêλ,x − qyêλ,y)fq(z)Qqλ, (B13)

P λ
q,y(z) = −2e11εxy

= −ie11(qyêλ,x + qxêλ,y)fq(z)Qqλ. (B14)

The potential φ resulting from the piezoelectric polarization
field is given by Poisson’s equation −ε0∇2φ(r) = ρ, where
ρ = −∇ · P is the polarization charge. Since we are consid-
ering an isolated material sheet, the only boundary condition
that applies is φ → 0 for z → ±∞. Fourier transforming in
all three directions, we find

ε0(q2 + k2)φq(k) = ρqfq(k), (B15)

where k is the Fourier variable in the direction perpendicular
to the plane of the layer. The Fourier components of the
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FIG. 8. (Color online) Piezoelectric interaction in a 2D hexagonal
lattice. The plots show the absolute value of the coupling matrix
element MPE

qλ in Eq. (B19) for the TA (left) and LA (right) phonon as
a function of the phonon wave vector q. The parameters for MoS2 in
Table I have been used.

branch-resolved piezoelectric polarization charge are given by

ρqλ = −iq · Pqλ = e11
(
q2

x êλ,x − q2
y êλ,x − 2qxqyêλ,y

)
Qqλ

≡ e11q
2Aλ(q̂)Qqλ, (B16)

where the angular dependencies have been collected in the
anisotropy factor Aλ. It is given by

ATA(q̂) = − sin 3θq and ALA(q̂) = cos 3θq (B17)

for the TA and LA phonon, respectively.
The z dependence of the piezoelectric potential is given by

the inverse Fourier transform of (B15) with respect to k which
yields

φqλ(z) = e11

ε0
Aλ(q̂)Qqλ

∫
dkeikzfq(k)

q2

q2 + k2

= e11

ε0
qe−q|z|Aλ(q̂)Qqλ, (B18)

where in the last equality, a δ-function z profile with fq(k) = 1
has been assumed. For atomically thin materials, this should
be a reasonable approximation.

The piezoelectric el-ph interaction in Eq. (B4) is now
given by H PE

qλ (z) = −eφqλ(z), and assuming, for simplicity,
a Gaussian envelope in Eq. (B5), the long-wavelength limit of
the piezoelectric coupling matrix element becomes26

MPE
qλ = e11e

ε0
q × erfc(qσ/2)Aλ(q̂), (B19)

where σ is the effective width of the electronic envelope
function. The piezoelectric interaction has the general property
that MPE

−qλ = −MPE
qλ

56. The absolute value of the piezoelectric
interaction (B19) is shown in Fig. 8. Here, the sixfold rotational
symmetry stems from the hexagonal crystal lattice and is
accounted for by the anisotropy factors in Eq. (B17).

Contrary to the 3D bulk case where the piezoelectric
interaction is independent of q56, the 2D interaction in
Eq. (B19) depends on the magnitude of the phonon wave
vector and acquires a linear q dependence for q → 0. The
latter is a consequence of the 2D crystal lattice which does not
support a piezoelectric potential from the acoustic phonons in
the long-wavelength limit [see Eq. (B18)].

APPENDIX C: FIRST-PRINCIPLES CALCULATION
OF THE el-ph INTERACTION

In this Appendix, we present the first-principles method
applied in the calculation of the el-ph interaction. In order to
support the new developments included in this work, we start
by briefly highlighting the most important aspects of the main
method presented in full detail in Ref. 26.

The coupling matrix element Mλ
kq in the el-ph interaction

in Eq. (6) of the main text involves the change in the crystal
potential δVqλ due to a phonon with wave vector q and branch
index λ. Under the assumption that the atomic displacements
are small, the phonon-induced change in the potential can be
constructed as a sum over individual atomic gradients,

δVqλ(r) = 1

N

∑
αl

eiq·Rl êα
qλ · ∇αlV (r). (C1)

Here, α is an atomic index in the primitive unit cell, Rl is the
lattice vector of unit cell l (relative to the reference unit cell
at R0), êqλ is the mass-scaled phonon polarization vector, ∇αl

denotes the gradient with respect to displacements of atom
(α,l) in the x,y,z directions, V is the crystal potential, and N

is the number of unit cells in the lattice.
The matrix element of the phonon-induced potential be-

tween the Bloch states with wave vectors k and k + q are eval-
uated by expanding the Bloch function in an LCAO basis. The
resulting expression for the matrix element follows by exploit-
ing the periodicity of the crystal lattice and takes the form26

Mλ
kq = 〈k + q|δVqλ(r)|k〉

= 1

N

∑
ij

c∗
i cj

∑
mn

eik·(Rn−Rm)−iq·Rm

×〈iRm|êqλ · ∇0V (r)|jRn〉, (C2)

where i = (α,μ) is a composite atomic (α) and orbital (μ)
index, |iRm〉 denotes the atomic orbital μ on atom α in the
primitive unit cell m, ci are the LCAO expansion coefficients,
and ∇0V is the gradient of the crystal potential with respect to
atomic displacements in the reference unit cell. The quantity
in the last line of Eq. (C2) is the LCAO supercell matrix of
the potential gradient. The real-space structure of its matrix
elements is illustrated schematically in Fig. 9.

rcut

| n>j  R

0

Δ

V

| >mi  R

FIG. 9. (Color online) Schematic illustration of the LCAO su-
percell matrix involved in the calculation of the el-ph coupling in
Eq. (C2). The square lattice indicates the unit cells of the crystal
lattice. The real-space cutoff rcut measured from the position of the
atomic site where the gradient of the potential is taken is used to
separate out the short- and long-range part of the el-ph interaction.
Matrix elements involving LCAO orbitals located beyond the cutoff
as the one shown are defined as long range [see also Eq. (C3)].
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1. Real-space separation of the short- and long-range part
of the electron-phonon interaction

In first-principles calculations of the el-ph interaction
both short range (deformation potential) and long range
(piezoelectric and Fröhlich interaction) are included in the
coupling in Eq. (6). However, due to their different origin it
may sometimes be desirable to consider them separately. In
the following we outline a real-space partitioning scheme to

separate the short-range and long-range contributions to the
el-ph interaction.

The central quantity of the partitioning scheme is the
LCAO supercell matrix illustrated schematically in Fig. 9. The
partitioning scheme consists in splitting up the summations in
Eq. (C2) into two contributions: (i) a short-range part which
neglects all matrix elements involving LCAO orbitals beyond
a chosen real-space cutoff rcut, and (ii) a long-range part which
includes the remaining matrix elements; i.e.,

〈iRm|∇α0V (r)|jRn〉 →
{

short range, |Rim − Rk0| < rcut and |Rjn − Rk0| < rcut,

long range, |Rim/jn − Rk0| > rcut,
(C3)

where Rmi = Rm + Rα denotes the atomic positions of the
LCAO orbitals and the potential gradients.

In general, the real-space cutoff rcut must be chosen small
enough that the short-range part does not include contributions
from truly long-range effects in the relevant range of phonon
wave vectors; i.e., π/rcut > qmax where qmax is the maximum
phonon wave vector of interest. At the same time, the cutoff
cannot be chosen too small that short-range effects are cut off.
As these guidelines do not provide a unique way to choose the
real-space cutoff, it should be verified in an actual calculation
that the results do not change significantly for different values
of the cutoff.

In Fig. 10 we show the deformation potential (top row)
and piezoelectric (bottom row) interactions for the TA and

Deformation potential interaction

Piezoelectric interaction

0.0

0.0
0.0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.0
0.0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.0
0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

FIG. 10. (Color online) Deformation potential (upper row) and
piezoelectric (lower row) interactions in monolayer MoS2 obtained
with the real-space partitioning scheme for different values of the
real-space cutoff rcut. The plots show the absolute value of the matrix
elements M

DP/PE
qλ averaged over the high-symmetry directions of the

hexagonal lattice. The analytic couplings in Eqs. (11) and (13) are
shown with dashed lines for the MoS2 parameters listed in Table I.

LA phonons in 2D MoS2 obtained with the partitioning
scheme for different values of the cutoff.57 The dashed
lines show the analytic forms for the deformation potential
and piezoelectric interactions in Eqs. (11) and (13) with
the parameters listed in Table I. While the variation in the
deformation potential interaction is relatively insignificant, the
piezoelectric interaction is more sensitive to the chosen cutoff.
The best agreement between the analytic expression for the
piezoelectric interaction in Eq. (13) and the first-principles
results is obtained for rcut = 6.0 Å.

It should be emphasized that the finite value of the
first-principles piezoelectric interaction in the limit q → 0
in Fig. 10 is an artifact inherent to a supercell method. The
finite real-space range of the el-ph interaction in supercell
methods naturally sets a lower limit for the magnitude of
the phonon wave vector qmin at which long-range interactions
can be obtained reliably. It is given by qmin = 2π/Lcell where
Lcell is the size of the supercell (measured as the diameter
of a sphere that can be contained within the supercell). In
the calculations presented here Lcell ∼ 45 Å implying that
qmin ∼ 0.14 Å−1 ∼ 0.07 × 2π/a.

The real-space partitioning scheme outlined here can also
be applied in other first-principles calculations of the el-ph
interaction based on, e.g., Wannier functions.71

2. Normal and umklapp processes

In order identify the normal and umklapp processes in the
el-ph interaction, we start by noticing that the gradients of
the potential ∇αlV ≡ fα(r − Rl) in Eq. (C1) are localized
functions in real space (see Fig. 9), where fα denotes an
atom-specific function. Due to the periodicity of the lattice,
the gradient in unit cell l is related to the gradient in the
reference cell through a translation by the lattice vector Rl .
We now express the gradients of the potential in terms of their
Fourier series,

∇αlV (r) =
∑

κ

eiκ ·(r−Rl )fα
κ , (C4)

where κ = (κ‖,κ⊥) is a three-dimensional Fourier variable. It
is here important to distinguish between the projections κ‖/κ⊥
of κ onto the periodic/nonperiodic directions of the lattice. The
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sum over the unit cell index l in Eq. (C1) now only contains
two exponential factors,∑

l

ei(q−κ‖)·Rl = Nδκ‖,q+G, (C5)

where the reciprocal lattice vector G and the phonon wave
vector q by definition have the dimensionality of the lattice.
This restricts the projection κ‖ to values q + G. Inserting in
Eq. (C1), we find for the phonon-induced potential

δVqλ(r) =
∑

G

ei(q+G)·r‖
∑
κ⊥α

eiκ⊥·r⊥ êα
qλ · fα

(q+G,κ⊥)

≡
∑

G

ei(q+G)·r‖δV λ
q+G(r⊥). (C6)

First of all, we note that this allows us write the phonon-
induced potential on the Bloch form in Eq. (9). Secondly,
the separation into normal (G = 0) and umklapp (G 	= 0)
processes is now formally straightforward.

It is important to note that in first-principles calculations of
the el-ph interaction, the term “umklapp process” has a more
general meaning than the one encountered in conventional
textbook discussions of the subject.58 In order to illustrate
this, it is instructive to evaluate the matrix element Mλ

kq in
Eq. (C2) with the electronic Bloch functions expanded as
ψk(r) = ∑

G ei(k+G)·r‖uk+G(r⊥), where uk+G are the Fourier
components of the periodic part of the Bloch functions. This
yields

Mλ
kq = 〈k + q|δVqλ(r)|k〉 =

∑
G

∑
G1G2

u∗
k+q+G1

δV λ
q+Guk+G2

×
∫

dr‖ ei(G+G1+G2−G3)·r‖︸ ︷︷ ︸
=δG3 ,G+G1+G2

, (C7)

where G1/2 are the reciprocal lattice vectors from the Bloch
functions, G3 is a reciprocal lattice vector that shifts k + q
to the first Brillouin zone in case it falls outside, and the r⊥
dependence has been integrated out. The δ function resulting
from the integral in the last line can be regarded as a generalized
statement of conservation of crystal momentum taking into
account the reciprocal lattice vectors from the Bloch functions.
It differs from the standard textbook definition where G1/2 = 0
and G = G3, implying that umklapp processes only contribute
to the matrix element if G3 	= 0; i.e., k + q /∈ 1.BZ.58 For
the generalized conservation of crystal momentum this is
not the case. Here, umklapp processes involving all Fourier
components G of the scattering potential contribute regardless
of the value of G3. This is illustrated in Fig. 11 which shows
an umklapp process (G 	= 0) for G3 = 0 and a (G1,G2) pair
that conserves crystal momentum. For intravalley scattering
where k + q is always inside the first Brillouin zone (if not,
the first Brillouin zone can chosen such that this is the case)
and hence G3 = 0, coupling to phonons via umklapp processes
takes place through the type of process shown in Fig. 11.

In the following section we outline a Fourier filtering
method which allows for a numerical separation of normal
and umklapp processes in the supercell method.

G1

G2

q+G k

q

FIG. 11. (Color online) Schematic illustration of an umklapp
process involving a Fourier component of the scattering potential
at q + G. The square lattice denotes the reciprocal lattice with the
shaded cell indicating the first Brillouin zone. The dashed arrows
show a pair of reciprocal lattice vectors G1/2 from the electronic
Bloch functions that conserve crystal momentum by bringing q + G
back onto q in the first Brillouin zone.

a. Fourier filtering method

In practice, the matrix elements of the el-ph interaction
are evaluated using Eq. (C2). The expression for the phonon-
induced potential change in Eq. (C6) is therefore not directly
applicable for the separation of the normal and umklapp
processes. Instead we note that the sum over unit cell indices
l in Eq. (C5) provides an automatic selection of the Fourier
components in ∇0V that contribute in Eq. (C6). The Fourier
expansion of ∇0V can therefore be used directly in the
calculation of the matrix element in Eq. (C2). Writing the
Fourier expansion as

∇0V (r) =
∑

κ‖∈1.BZ

eiκ‖·r‖ fκ‖ (r⊥) +
∑

κ‖ /∈1.BZ

eiκ‖·r‖fκ‖(r⊥), (C8)

the two terms with κ‖ lying inside and outside the Brillouin
zone (BZ) of the crystal lattice define the normal and umklapp
contribution to the el-ph interaction, respectively.

Numerically, the atomic gradients ∇0V are represented on
a three-dimensional real-space grid in the supercell having
length Li and Ni number of grid points in the direction of the
lattice vector ai . The resulting grid spacing is �xi = Li/Ni .
The values of the gradients on the grid are denoted fijk . The
Fourier expansion is obtained using the fast Fourier transform
(FFT),

fκiκj κk
= FFT(fijk), (C9)

with the corresponding Fourier space grid in the direction
of the primitive reciprocal lattice vector bi given by κi =
−κi,max + n�κi with n = 0,1,2, . . . ,Ni − 1, �κi = 2π/Li ,
and κi,max = π/�xi . As the supercell has a real-space grid
spacing significantly smaller and a size significantly larger than
the lattice constant a, i.e., �xi  a and Li 
 a, respectively,
we have that κi,max 
 π/a and �κi  π/a.

The normal and umklapp processes can now be separated
by Fourier filtering fκiκj κk

. This is done by zeroing the
Fourier components at κ = (κi,κj ,κk) with κ‖ lying outside
or inside the Brillouin zone. Using a tilde to denote the filtered
quantities, we have

f̃κiκj κk
→

{
normal, 	= 0 if κ‖ ∈ 1.BZ,

umklapp, 	= 0 if κ‖ /∈ 1.BZ.
(C10)
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Applying the inverse FFT (IFFT)

f̃ijk = IFFT(f̃κiκj κk
), (C11)

we obtain the filtered gradients in real space which can be used
in the numerical evaluation of the matrix element in Eq. (C2).
Since the gradients of the potential ∇0V are real valued, the
imaginary part of f̃ijk can be discarded.
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