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Charge carrier transport in single-layer graphene with one-dimensional charged defects is studied theoretically.
Extended charged defects, considered an important factor for mobility degradation in chemically vapor-deposited
graphene, are described by a self-consistent Thomas-Fermi potential. A numerical study of electronic transport
is performed by means of a time-dependent real-space Kubo approach in honeycomb lattices containing millions
of carbon atoms, capturing the linear response of realistic size systems in the highly disordered regime. Our
numerical calculations are complemented with a kinetic transport theory describing charge transport in the weak
scattering limit. The semiclassical transport lifetimes are obtained by computing scattered amplitudes within
the second Born approximation. The transport electron-hole asymmetry found in the semiclassical approach is
consistent with the Kubo calculations. In the strong scattering regime, the conductivity is found to be a sublinear
function of electronic density and weakly dependent on the Thomas-Fermi screening wavelength. We attribute
this atypical behavior to the extended nature of one-dimensional charged defects. Our results are consistent with
recent experimental reports.
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I. INTRODUCTION

The isolation of graphene—the “queen” of two-
dimensional materials due to its remarkable physical
properties—by the exfoliation method has triggered intensive
studies of its fundamental properties and has opened horizons
for future technologies.1–3 Since that time, various methods
of graphene growth have been explored in order to make
the fabrication process scalable; a prerequisite for developing
graphene-based devices and technologies.4 Nowadays, several
techniques are capable of producing high-quality, large-scale
graphene. These include epitaxial graphene growth on SiC5

and chemical vapor deposition (CVD) of graphene on tran-
sition metal surfaces.6 The advantages of the latter method
lie in its low cost, possibility to grow large graphene sheets
(tens of inches), and ease of its transfer into other substrates.7

Currently, there is a strong motivation for exploring electronic
and transport properties of CVD grown graphene because it
represents one of the most promising materials for flexible and
transparent electronics.

The studies of the transport properties of graphene are often
focused on the fundamental question: what limits a charge
carrier mobility in it? As far as CVD-grown graphene is con-
cerned, it is believed that its transport properties are strongly
affected by the presence of charged line defects.8 Usually, the
growth of graphene by the CVD method requires to use metal
surfaces with hexagonal symmetry, such as the (111) surface
of cubic or the (0001) surface of hexagonal crystals.9 The
mismatch between the metal-substrate and graphene causes the
strains in the latter, reconstructs the chemical bonds between
the carbon atoms and results in formation of two-dimensional
(2D) domains of different crystal orientations separated by
one-dimensional defects.9–12 The nucleation of the graphene
phase takes place simultaneously at different places, which

leads to the formation of independent 2D domains matching
corresponding grains in the substrate. A line defect appears
when two graphene grains with different orientations coalesce;
the stronger the interaction between graphene and the sub-
strate, the more energetically preferable the formation of line
defects is. These line defects accommodate localized states
trapping the electrons, originating lines of immobile charges
that scatter the Dirac fermions in graphene.

It is well established that the presence of grains and grain
boundaries in three-dimensional polycrystalline materials can
strongly affect their electronic and transport properties. Hence,
in principle, the role of such structures in 2D materials, such as
graphene, can be even more important because even a single
line defect can divide and disrupt the crystal.9 A series of recent
control experiments13,14 strongly indicate that line defects
are responsible for lower carrier mobility in CVD-grown
graphene in comparison to the exfoliated samples.15–17 We
note in passing that one-dimensional (1D) defects have been
observed not only in experimental studies on CVD growth of
graphene films, for instance, on Cu,14 Ni,18 Ir,19 but also in
single graphene layer after electron irradiation20 and in highly
oriented pyrolytic graphite surface.21 Possible applications
include valley filtering based on scattering off-line defects,22

ferromagnetic ordering in-line defects,23,24 enhancement of
electron transport,25 or chemical reactivity26 due to induced
extra conducting channels and localized states along the line,
quantum channels controlled by tuning of the gate voltage
embedded below the line defect,27 and correlated magnetic
states in extended defects.28

Several theoretical studies have been recently reported
addressing transport properties of graphene with a sin-
gle graphene boundary.29–31 Conductivity of polycrystalline
graphene with many domain boundaries has been recently
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addressed by Tuan et al.32 who reported a scaling law relating
the average grain size and charge transport properties. On the
other hand, much less attention has been paid to the effect of
charge accumulation at these boundaries due to self-doping.
Transport properties of graphene with 1D charged defects
has been studied in Ref. 8 using the Boltzmann approach
within the first Born approximation. It has been demonstrated
previously that such approximation is not always applicable
for the description of electron transport in graphene even at
finite (nonzero) electronic densities.33–36 In the present work,
we investigate the impact of extended charged defects in
the transport properties of graphene by an exact numerical
approach based on the time-dependent real-space quantum
Kubo method,34,36–46,48,49 which is especially suited to treat
large graphene systems with dimensions approaching realistic
systems containing millions of atoms. Our numerical calcula-
tions are complemented with a semiclassical treatment going
beyond the first Born approximation, describing the transport
properties in the weak scattering regime.

The paper is organized as follows. The numerical mod-
els (tight-binding approximation and Kubo approach) and
obtained results are presented in Sec. II. In Sec. III, we
study the impact of extended charged defects within kinetic
transport theory. Here, the general expression for the scattering
amplitude for massless fermions within the second Born
approximation is derived and used to obtain the semiclassical
conductivity and the transport electron-hole asymmetry. The
approaches in Secs. II and III provide information about
transport dominated by 1D charged defects in distinct regimes.
Section IV presents the conclusions of our work. Details of
numerical calculations and analytic derivations are given in
the Appendices.

II. TIGHT-BINDING MODEL AND TIME-DEPENDENT
REAL-SPACE KUBO–GREENWOOD FORMALISM

In this section, we introduce to the basis of the tight-binding
approximation as well as the Kubo-Greenwood approach and
also present numerical results obtained within the framework
of these models.

A. Basics

To model electron dynamics in graphene, we use a standard
p-orbital nearest-neighbor tight-binding Hamiltonian defined
on a honeycomb lattice:3,50,51

Ĥ = −u
∑
i,i ′

c
†
i ci ′ +

∑
i

Vic
†
i ci , (1)

where c
†
i and ci are the standard creation and annihilation

operators acting on a quasiparticle on the site i. The summation
over i runs over the entire graphene lattice, while i ′ is restricted
to the sites next to i; u = 2.7 eV is the hopping integral for the
neighboring C atoms i and i ′ with distance a = 0.142 nm
between them, and Vi is the on-site potential describing
impurity (defect) scattering.

Since line defects can be thought as lines of reconstructed
point defects,9–12 we model 1D defects as point defects
oriented along a fixed direction (corresponding to the line
direction) in the honeycomb lattice. The electronic effective

potential for a charged line within the Thomas-Fermi approx-
imation was first obtained in Ref. 8 (see also Appendix A);
if there are Nlines such charged lines in a graphene lattice, the
effective scattering potential reads as

Vi =
Nlines∑
j=1

Uj {−cos(qTFxij )Ci(qTFxij )

+ sin(qTFxij )[π/2 − Si(qTFxij )]}, (2)

where Uj is a potential height, xij is a distance between
the site i and the j th line, qTF = e2kF /(πε0εrh̄vF ) is the
Thomas-Fermi wave vector defined by the electron Fermi
velocity vF = 3ua/(2h̄) and the Fermi momentum kF =√

π |ne| (related to the electronic carrier density ne controlled
applying the back-gate voltage). Here, −e < 0 denotes the
electron charge. The Thomas-Fermi wave vector is also
commonly expressed as a function of graphene’s structure
constant αg ≡ e2kF /(4πε0εrh̄vF ) according to qTF = 4αgkF .
We consider two cases: symmetric, V ≷ 0, and asymmetric,
V > 0, potentials, where Uj are chosen randomly in the ranges
[−�,�] and [0,�], respectively, with � being the maximal
potential height. In order to simplify numerical calculations,
we fit the potential (2) by the Lorentzian function

Vi =
Nlines∑
j=1

Uj

[
A/

(
B + Cx2

ij

)]
, (3)

as described in Appendix A. A typical shape of the effective
potential for both symmetric and asymmetric cases is illus-
trated in Fig. 1.

B. Time-dependent real-space Kubo method

To calculate numerically the dc conductivity σ of graphene
sheets with 1D charged defects, the real-space order-N
numerical implementation within the Kubo-Greenwood for-
malism is employed, where σ is extracted from the temporal
dynamics of a wave packet governed by the time-dependent
Schrödinger equation.32,37–46,48,49 This is a computationally
efficient method scaling with a number of atoms in the system
N , and thus allowing treating very large graphene sheets
containing many millions of C atoms.

A central quantity in the Kubo-Greenwood approach is
the mean quadratic spreading of the wave packet along the
x direction at the energy E, �X̂2(E,t) = 〈 ˆ[X(t) − X̂(0)]2〉,
where X̂(t) = Û †(t)X̂Û (t) is the position operator in the
Heisenberg representation, and Û (t) = e−iĤ t/h̄ is the time-
evolution operator. Starting from the Kubo-Greenwood for-
mula for the dc conductivity,52

σ = 2πh̄e2

�
Tr[v̂xδ(E − Ĥ )v̂xδ(E − Ĥ )], (4)

where v̂x is the x component of the velocity operator, E is the
Fermi energy, � is the area of the graphene sheet, and factor
2 accounts for the spin degeneracy, the conductivity can then
be expressed as the Einstein relation,

σ ≡ σxx = e2ρ̃(E) lim
t→∞ D(E,t), (5)

where ρ̃(E) = ρ/� = Tr[δ(E − Ĥ )]/� is the density of
sates (DOS) per unit area (per spin), and the time-dependent
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FIG. 1. (Color online) Effective symmetric [(a) and (b)] and asymmetric [(c) and (d)] potentials describing one of the possible configurations
of 10 (left) and 50 (right) line defects in graphene sheet of the size m × n = 1700 × 1000 sites corresponding to 210 × 210 nm. Maximal
potential height � = 0.25u.

diffusion coefficient D(E,t) relates to �X̂2(E,t) according to

D(E,t) = 〈�X̂2(E,t)〉
t

= 1

t

Tr{ ˆ[XH (t) − X̂(0)]2δ(E − Ĥ )}
Tr[δ(E − Ĥ )]

. (6)

It should be noted that in the present study we are interested
in the diffusive transport regime when the diffusion coefficient
reaches its maximum. Therefore, following Refs. 46 and 47,
we replace in Eq. (5) limt→∞ D(E,t) → Dmax(E), such that
the dc conductivity is defined as

σ = e2ρ̃(E)Dmax(E). (7)

Note that in most experiments, the conductivity is measured
as a function of electron density ne. We calculate the electron
density as ne(E) ≡ ne = ∫ E

−∞ ρ̃(E)dE − nions, where nions =
3.9 × 1015 cm−2 is the density of the positive ions in the
graphene lattice compensating the negative charge of the p

electrons [note that for the ideal graphene lattice atxbrk the
neutrality point n(E) = 0 ]. Combining the calculated ne(E)
with σ (E) given by Eq. (7), we obtain the required dependence
of the conductivity σ = σ (ne).

C. Numerical results

This section presents numerical results for the dc con-
ductivity calculated using the time-dependent real space
Kubo-Greenwood formalism within the tight-binding model.
We compute the density dependence of the conductivity for

graphene sheets with 10 and 50 lines in 1700 × 1000 lattice.
This approximately corresponds to a relative concentration
of point defects of respectively 1% and 5%. We model the
potential due to lines of charges by the Lorentzian function,
Eq. (3), where we set qTFa = 0.1, which corresponds to
typical electron densities |nexp

e | ∼ 5 × 10−5 atom−1 (|nexp
e | ∼

2 × 1011 cm−2), see Fig. 1. It should be noted that qTF is
not a constant but is weakly density dependent (qTF ∝ √|ne|).
Quite remarkably, the obtained results for the conductivity
remain practically unchanged when we use different qTF

corresponding to representative electron densities considered
in the present study, 1 × 10−5 � |ne| � 5 × 10−5 atom−1. In
Appendix B, we present results of more elaborated self-
consistent calculations where we use the exact shape of the
Thomas-Fermi potential [i.e., Eq. (2) instead of Eq. (3)]
and take into account the density dependence of qTF. We
found that even for a single charged line embedded in a
graphene sheet, the dependence σ = σ (ne) calculated for the
exact self-consistent (i.e., ne-dependent) potential (2) exhibits
qualitatively and quantitatively the same sublinear behavior as
in the simulations with the fixed Thomas-Fermi wave vector
(qTFa = 0.1) and with Vi given by the Lorentzian function
(3). The same conclusion holds for samples with 10 and
50 lines. Because of this in what follows we will discuss
the results for the case of the Lorentzian potential at the
fixed qTF.

Figure 2 shows the electron density ne = n(E) and the DOS
in a graphene sheet with different number of charged lines. The
calculated dependencies are very much similar to those for
clean graphene and for graphene with a long-range Gaussian
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FIG. 2. (Color online) Density of states (DOS) and the relative
charge carrier concentration ne (the number of electrons per C atom)
vs the energy E for 10 and 50 positively charged line defects described
by the symmetric potential potential with � = 0.25u.

potential.36,45 (Note that the DOS of graphene with short-range
strong scatterers exhibits an impurity peak in the vicinity of
neutrality point.)34,36,45,53,54 For both symmetric (not shown
here) and asymmetric potentials, the DOS does not reach zero
at the Dirac point, and the asymmetric potential (in contrast
to the symmetric one) leads to electron-hole asymmetry in the
DOS.

The time dependence of the diffusion coefficient at different
energies for the case of a symmetric potential corresponding
to 10 and 50 positively charged line defects is shown in Fig. 3.
[Diffusivity curves for the case of asymmetric potential (not
shown here) exhibit similar behavior.] After an initial linear
increase corresponding to the ballistic regime, the diffusion
coefficient reaches its maximum at t ≈ 130 and 150 fs for
10 and 50 lines, respectively. These values of D = Dmax are
used to calculate σ according to Eq. (7). For times t � 150,
D(t) decreases due to the localization effects. Similar temporal
behavior of the diffusion coefficient was established earlier for
different types of scatterers in graphene including long-range
Gaussian and short-range potentials.36,46,47

In Fig. 4, we show the density dependence of the
conductivity of graphene sheets with linear defects for the
cases of symmetric and asymmetric potentials. The obtained
dependencies show the following features.

First, the averaged conductivities exhibit a pronounced
sublinear density dependence, see Figs. 4(c) and 4(f). Our
numerical calculations are consistent with the recent ex-
perimental results for the CVD-grown graphene6,13,55 that
also exhibit sublinear density dependence. This provides
an evidence in support that the line defects represent the
dominant scattering mechanism in CVD-grown graphene.6,8,13

Note that the calculated sublinear density dependence for
the case of linear defects is quite different from the case of
short- and long-range point scatterers where the numerical
calculations show a density dependence that is close to
linear.33,34,36,45,56

Second, the conductivities of samples with different im-
purity configurations exhibit significant variations between
each other, see Figs. 4(a), 4(b), 4(d), and 4(e). This is in
strong contrast to the case of short- and long-range point
scatterers where corresponding conductivities of samples of
the same size and impurity concentrations practically did
not show any noticeable differences for different impurity
configurations.36 We attribute this to the fact that in contrast
to point defects, the line defects are characterized not only
by their positions, but also by directions (orientations) and
their intersections as well. Such additional characteristics
result in much more possible distributions of the potential
which, in turn, leads to the differences in the conductivity
curves.

Third, for the symmetric potential, the conductivity curves
are symmetric with respect to the neutrality point, while the
asymmetric one shows the asymmetry of the conductivity,
c.f., Figs. 4(c) and 4(f). Such asymmetry between the holes
and electrons have been also reported in many transport
calculations for graphene with point defects, for instance,
in Refs. 34,36,42,46,57, and 58. For a closer inspection of
the effect of asymmetry we plotted the conductivities for
representative energies E = ±0.5u in Fig. 5(a) as well as their
relative differences σ (−E)−σ (E)

σ (−E)+σ (E) as a function of the potential
strength � in Fig. 5(b). The relative conductivity difference
exhibits a linear behavior for � � 0.4u followed by saturation
for larger values of �. A comparison of the obtained numerical
results with the analytic predictions in the weak scattering
regime will be given in what follows.

We conclude this section by noting that the conductivity of
large CVD-grown graphene polycrystalline samples with dis-
ordered grain boundaries was calculated by Tuan et al.32 using
the same time-dependent real-space Kubo method. In contrast

FIG. 3. (Color online) Time-dependent diffusion coefficient at different energies for 10 (a) and 50 (b) positively charged line defects
(� = 0.25u).
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FIG. 4. (Color online) Conductivity as a function of energy E [(a), (b), (d), and (e)] and relative electron density n [(c) and (f)] for different
configurations of 10 and 50 positively charged 1D defects (� = 0.25u). Conductivities in (c) and (f) are averaged over 20 different realizations
in (a), (b), and (d), (e).

to the long-range Thomas-Fermi potential considered here,
the onsite potential in Ref. 32 is set to zero and the scattering
is due to grain boundaries separating domains with different
crystallographic orientations. Even though this study did not
discuss a functional dependence of the conductivity, a visual
inspection of the obtained results reveals an approximate linear
dependence of the conductivity on the Fermi energy, which
is consistent with our results. Moreover, the conductance of
graphene with several types of domain boundaries has also
been shown to be a linear function of the Fermi energy.31 We
therefore speculate that the linear energy dependence (and thus
the sublinear density dependence) of the conductivity is related
to scattering off extended defects. More systematic studies of
scattering for different forms of potentials are needed in order
to clarify this question.

III. BOLTZMANN APPROACH

A. Formalism

In this section, we tackle the problem of dc transport in
graphene with 1D charged defects by means of semiclassical
Boltzmann theory. We would like to stress that the full quantum
calculations of Sec. II and semiclassical kinetic theory provide
complementary information about electronic transport; while
the former is more suitable to handle highly disordered systems
or the strong scattering regime (given practical computational
limitations),60 semiclassical approaches yield an accurate
picture of charge transport for dilute disorder and are often
limited to the weak scattering regime (an exception being
resonant scattering, which can be treated nonperturbatively).34

Here, the dimensionless parameter β ≡ |�|L/(h̄vF ), with L

FIG. 5. (Color online) (a) The conductivity and relative (b) values of conductivities for two symmetrical (with respect to the Dirac point)
energies as functions of positive (asymmetric) potential V ∼ U ∈ [0,�].
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FIG. 6. (Color online) Schematic picture showing a scattering
event and Feynman scattering diagrams considered in this work. The
circle signifies the extended charged defect with charge density λ

and the zigzag (solid) line denotes the scattering potential (bare
propagator). The transport relaxation rate is O(λ2) in the FBA
approximation (top diagram) andO(λ3) in the SBA (bottom diagram).

of the order of the system size, defines the onset of weak
scattering regime, i.e., β � 1. Note that the simulations of the
previous section have β � 102, and therefore fall well inside
the strong scattering regime.

The effective potential of a charged line is long ranged, and
hence we neglect intervalley scattering. Within the Dirac cone
approximation, the semiclassical dc conductivity of graphene
at zero temperature is given by3,34,50,51

σ = ge2

2h
kF vF τ (kF ) . (8)

In the above, the factor g = 4 accounts for spin and valley
degeneracies, and τ (kF ) is the transport scattering time at the
Fermi surface:

τ (kF ) =
[
nlvF

∫
dθ (1 − cos θ )|f (θ )|2

]−1

, (9)

where f (θ ) is the scattering amplitude at an angle θ and nl

stands for the (areal) density of charged lines.
In this work, we compute the scattering amplitudes in

the second Born approximation (SBA) with respect to the
scattering potential V (r). This allows us to improve over
the commonly employed first Born approximation (FBA) by
capturing the nontrivial effect of electron-hole asymmetry (see
Fig. 6). In the Appendix C, we show that the SBA scattering
amplitude for 2D massless fermions is given by

fSBA(θ ) = �(θ )

vFh̄

√
k

8π

[
Ṽ (q) +

∫
d2p

(2π )2 Ṽ (k′ − p)

×〈uk|G0(p)|uk〉Ṽ (p − k)

]
, (10)

where Ṽ (q) denotes the 2D Fourier transform of the scattering
potential energy of a charged line Ṽ (q) = ∫

d2re−iq·rV (r),
and G0(p) is the 2D Dirac fermion propagator for particles
with energy EF = svFh̄kF , i.e.,

G0(p) = 1

h̄2v2
F

EF + h̄vF σ · p

k2
F − p2 + is0+ . (11)

The symbol s = ±1 distinguishes between electrons and holes,
that is, s ≡ sign(EF ). k is the wave vector of the incident
electron, h̄q = h̄(k′ − k) is the transferred momentum (k′

stands for the “out” wave vector), θ = ∠(k′,k) is the scattering
angle, |uk〉 = 2−1/2(1, seiθk )T is the Dirac spinor for scattered
particles, and the form factor �(θ ) = 1 + eiθ comes from
graphene’s sublattice symmetry and precludes carriers from
backscatter. Without loss of generality, in what follows, we
consider incident carriers propagating along the x direction,
k = kF ex .

The first term inside brackets in Eq. (10) is proportional
to the Fourier transform of the scattering potential evaluated
at the transferred momentum h̄q, that is, the familiar FBA
scattering amplitude. The remaining terms result from the next-
order correction to the FBA and require the calculation of two
integrals, namely,

I1 ≡ h̄vF kF

∫
d2p

(2π )2 Ṽ (k′ − p)g(p)Ṽ (p − k), (12)

I2 ≡
∫

d2p

(2π )2 Ṽ (k′ − p)[h̄vF p · ex]g(p)Ṽ (p − k). (13)

In writing these equations, we have defined the function

g(p) = (h̄vF )−2 (
k2
F − p2 + is0+)−1

. (14)

The scattering potential of an infinite line with density
charge ρ = λδ(x)δ(z) was derived by some of the authors in
Ref. 8 and is given by

Ṽ (q) = 2πδ(qy)
�

|qx | + qTF
, (15)

where the parameter with units of energy � relates to the
charge density of a line λ according to � = sλe/(2ε0) (in
vacuum); note that the absolute value of � coincides with the
definition of � as given in Sec. II A. The δ function in Eq. (15)
reflects momentum conservation along the direction defined
by the line. For completeness, a derivation of this result is
provided in Appendix A.

In order to mimick the effect of lines with finite length, we
have to modify Eq. (15) as to allow for momentum transfer to
occur along both spatial directions. To this end, we introduce a
length scale associated with the line’s average length L. In the
limit of small kF L, we replace 2πδ(qy) → L,61 as to obtain

ṼL(q) ≡ L�

|qx | + qTF
. (16)

We use this potential as a toy model for describing transport for
dilute concentrations of lines of charge. The particularly simple
form of ṼL(q) allows for an exact calculation of scattering
amplitudes, as shown in what follows.

B. First Born approximation

The FBA provides a good approximation to transport
scattering rates for 1D charged defects with |�| � h̄vF L−1

(β � 1). Within the FBA, we retain only the first term in
Eq. (10). The transport relaxation rate

[τFBA(kF )]−1 = nlvF

L2�2kF

8πv2
Fh̄

∫ 2π

0
dθ (1 − cos θ )

× |�(θ )|2[kF (1 − cos θ ) + qTF]−2 , (17)
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FIG. 7. (Color online) Semiclassical dc conductivity at fixed
Thomas-Fermi wave vector as a function of Fermi energy in the weak
scattering regime with β = 0.08 and qTFa = 0.01. (Inset) The ratio
Q2(αg)/Q1(αg) determining the amount of transport electron-hole
asymmetry is plotted as function of graphene’s effective structure
factor αg.

can be computed analytically and leads to the following result:

τFBA(kF ) = 1

vF nlβ2

2kF

√
qTF(2kF + qTF)

kF + qTF − √
qTF(2kF + qTF)

.

(18)

Invoking the semiclassical expression for the dc conductivity,
Eq. (8), and the relation qTF = 4αgkF , we conclude that σ is
proportional to k2

F , according to

σ = 4e2

h

f (4αg)

nlβ2
k2
F , (19)

with f (x) = g(x)/[1 + x − g(x)] and g(x) = √
x(2 + x). The

dependence of Eqs. (18) and (19) on the Fermi wave vector
could be anticipated from the form of the effective potential in
Fourier space, Eq. (16); as Ṽ ∝ k−1

F , the relaxation time must
be proportional to kF at all orders in the Born series, implying
σ ∝ k2

F ∝ |ne|. In other words, higher-order corrections to the
FBA renormalize the mobility of carriers μ ≡ σ/|ne|, while
preserving the overall dependence of σ and μ on the Fermi
energy. This property is specific to the potential ṼL(q) and
therefore is not expected to hold in models of extended charged
defects beyond the limit of small kF L.

We briefly discuss how the FBA conductivity compares
with the results reported earlier in Fig. 4. The solid line in
Fig. 7 shows the FBA conductivity at fixed Thomas-Fermi
wave vector, i.e., qTFa = 0.01. In this case, the function f (4αg)
is no longer constant and the functional dependence of σ with
kF is changed to linear at small energies, hence resembling the
Kubo results. However, this comparison should not be pushed
too far; note that the slope of the FBA σ versus E curve
depends linearly on qTF, and therefore Eq. (19) (and hence the
quadratic dependence) is recovered when the self-consistent
relation qTF = 4αgkF is used. In fact,

σ (kF ,qTF) = 4e2

h

qTFkF

nlβ2
, kF � qTF . (20)

whereas the Kubo simulations show σ ∝ kF independently on
qTF in a wide range of energies. The latter behavior does not
occur in the weak scattering regime described here.

C. Second Born approximation: Electron-hole asymmetry

A large sensitivity to the carriers polarity in transport
dominated by charged lines is borne out in the numerical
simulations of Sec. II. Here, we describe this effect from the
point of view of semiclassical transport theory. According to
the Fermi’s “golden rule” the transport relaxation rate depends
on the modulus square of the scattering potential; hence,
in FBA approximation, opposite charges ±e have the same
scattering amplitudes and hence cannot be distinguished. As
observed earlier, the dependence of σ on the carriers polarity
can be captured by retaining the next term in the Born series
for the scattering amplitude f (θ )—the SBA bottom diagram
in Fig. 6.

We compute the transport electron-hole asymmetry, defined
as

δ ≡
∣∣∣∣σdc − σ ∗

dc

σdc + σ ∗
dc

∣∣∣∣ , (21)

with σ ∗
dc ≡ σdc|e→−e = σdc|�→−�. In the weak scatter-

ing regime, L|�| � h̄vF , the asymmetry parameter is
proportional to the ratio of the bottom to the top diagrams
in Fig. 6. Explicitly,

δ = 2 sign� Re
∫

dθ |�(θ )|2(1 − cos θ )[I1 + I2]Ṽ (qθ )∫
dθ |�(θ )|2(1 − cos θ )|Ṽ (qθ )|2 ,

(22)

where qθ = 2kF sin(θ/2) is the transferred momentum in
elastic scattering events. Remark that I1(2) in Eq. (22) depend
on the angle θ through the wave vector k′ [c.f., Eqs. (12) and
(13)]. The derivation of this and related results is given in
Appendix D.

Inserting the potential energy of a charged line Eq. (16) into
the above expression and performing the angular integration
yields

δ ≈
∣∣∣∣�L

h̄vF

∣∣∣∣ Q2(αg)

Q1(αg)
. (23)

The explicit form of the functions Q1(αg) and Q2(αg) is given
in Eqs. (D10) and (D14), respectively. For the toy model of a
charged line considered here [see Eq. (16)], cross sections are
proportional to k−1

F at all orders, implying that the asymmetry
parameter δ is insensitive to the Fermi energy. Indeed, the
electron-hole asymmetry depends only on the magnitude of
the Thomas-Fermi screening through the effective graphene’s
structure constant, αg. In vacuum, αg ≈ 2.5, and the evaluation
of Eq. (23) yields δ ≈ 0.08 · β. The ratio Q2/Q1 is found to
be very sensitive to the effective screening length of a charged
line (refer to inset of Fig. 6); for qTF � kF (αg � 1), screening
is very efficient and electron-hole asymmetry is negligible,
whereas for qTF � kF (αg � 1) the ratio Q2/Q1 can assume
large values leading to an enhancement of the asymmetry
parameter δ.

The transport electron-hole asymmetry in scattering events
reflects into a decrease (increase) of the SBA transport
relaxation time with respect to the FBA result for positive
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(negative) Fermi energy. In fact, by expanding the SBA
transport relaxation rate Eq. (9) in the small parameter β,
we find

τ (kF ) = [1 − sδ(αg) + O(β2)]τFBA(kF ). (24)

This result shows that the effect of second term in the
Born series (bottom diagram in Fig. 6) is to renormalize the
transport relaxation time according to the carriers polarity,
s, and screening strength αg. This behavior is qualitatively
consistent with the numerical Kubo simulations (see Fig. 4,
for instance). In order to make the comparison between the
semiclassical SBA prediction and the simulations shown in
Sec. II more accurate, we investigate the behavior of Eq. (24)
at fixed Thomas-Fermi wave vector. Note that, in this case,
the asymmetry parameter becomes a function of the Fermi
energy according to δ = δ(qTF/4kF ). Given the behavior of
the function Q2/Q1 at small values of its argument (see inset
of Fig. 7), the asymmetry at fixed qTF can be quite large
even at modest kF , originating a considerable deviation of
the conductivity at fixed qTF from its FBA value, as depicted
in the main panel of Fig. 7.

D. Comparison with Kubo simulations

Variation of conductivity with electronic density. In the
strong scattering regime, the numerical Kubo simulations
disclose a dc conductivity that is linear in the Fermi wave
vector, σ ∝ kF ∝ |ne|1/2, a very distinct behavior from the
semiclassical prediction for the dc conductivity, σ ∝ k2

F ∝
|ne|. At first sight, it seems that both results are irreconcilable;
after all they focus on opposite scattering regimes. However,
for the toy model of a charged line considered here [see
Eq. (16)], σ ∝ k2

F at all orders in perturbation theory, and hence
we would expect similar semiclassical behavior even in the
strong scattering regime. In order to investigate this question
further, we have performed numerical Kubo simulations for a
dilute system with a single line of charge in the strong scat-
tering regime (see Appendix B). These simulations show the
same functional dependence σ = σ (ne) than the simulations
of Sec. II for highly disordered configurations. This indicates
a possible failure of the toy model in describing the potential
landscape of the simulations in a wider range of electronic
densities; remark that, by construction, Eq. (16) should provide
a good description of transport only at low Fermi momentum.

Transport electron-hole asymmetry. A decrease (increase)
of the electronic mobility for electrons (holes) with respect
to the particle-hole symmetric case V ≷ 0 is found in all
numerical simulations with V > 0 (see Figs. 4 and 9). This
effect can be ascribed to the shift of the charge neutrality point
towards positive energy values caused by a potential landscape
with positive sign (see density of states in Fig. 2). Although the
semiclassical picture is build upon the density of states of bare
graphene, the inclusion of higher-order diagrams (see Fig. 7)
in the calculation of the scattering amplitude renormalizes
the relaxation rates according to the carriers polarity, thus
accounting correctly for the general behavior of the transport
electron-hole asymmetry.

IV. CONCLUSIONS

In this work, we have considered theoretically the trans-
port properties of graphene with extended charged defects.
Recent experiments show that these defects are ubiquitous
in chemically synthesized graphene systems and degrade
their electronic mobilities. We modeled extended charged
defects by lines with uniform charge densities and computed
their potentials according to a self-consistent Thomas-Fermi
approach. In contrast to the charged point defects, the potential
of a line of charge is screened poorly by low-energy excitations
in graphene, resulting in long-ranged effective potentials. We
considered the regimes of weak and strong scattering by means
of semiclassical Boltzmann theory and large-scale numerical
evaluation of the Kubo formula, respectively. Whereas the
semiclassical calculation reveals a familiar linear dependence
of conductivity with the electronic density, the Kubo simu-
lations show a robust sublinear dependence and conductivity
nearly constant by varying the Thomas-Fermi wavelength by
almost one order of magnitude. The latter is a remarkable
property of extended charged defects in graphene.
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APPENDIX A: THOMAS-FERMI RENORMALIZED
POTENTIAL OF A CHARGED LINE IN GRAPHENE AND
RESPECTIVE FITTING BY A LORENTZIAN FUNCTION

Here, we derive the effective potential of an infinite charged
line within the Thomas-Fermi (TF) approximation. Rearrange-
ments of electronic density in a metal, around an impurity, does
not alter the Fermi energy EF , and thus we may write59

EF � ε(r) − eϕ2D(r) , (A1)

where ε(r) and eϕ2D(r) are, respectively, the local energy of the
electrons at the top of the band and the effective potential en-
ergy induced by the impurity charge. In our problem, the metal
is graphene (at finite densities) and the impurity is a charged
line. Let neq be the electronic density of pristine graphene, then

ε(r) = EF + dε

dn(r)

∣∣∣∣
n(r)−neq

[n(r) − neq] (A2)

to first order in δn(r) ≡ n(r) − neq. We thus arrive at the
following relation between the potential energy and the charge
density:

eϕ2D(r) � dε

dn(r)

∣∣∣∣
n(r)=neq

[n(r) − neq]

= κ

2
√

n(r)
δn(r), (A3)

where ε(r) � κ
√

n(r) with κ = h̄vF kF /
√

neq.

195448-8



EFFECT OF CHARGED LINE DEFECTS ON . . . PHYSICAL REVIEW B 87, 195448 (2013)

The above equations show that in order to maintain the
Fermi level constant, a change in the local electronic density
takes place. The effective potential has to be determined self-
consistently solving the Poisson’s equation. According to the
TF approximation, we have

∇2ϕeff(r,z) = − 1

ε0εr
[ρimp(r,z) + δρ(r,z)], (A4)

where ε0 (εr) is a vacuum (relative) permittivity. Note that in the
above equation, ϕeff(r,z) depends on the in-plane coordinates
r and z. We consider a line defect with charge per unit of length
λ, and orientated along the y axis,

ρimp(r,z) = λδ(x)δ(z). (A5)

From Eqs. (A4) and (A5) and

δρ(r,z) = −eδn(r)δ(z)

= −2e2

κ

√
neqϕ2D(r)δ(z) , (A6)

we arrive at the important intermediate result

∇2ϕeff(r,z) = 1

ε0εr

[
2e2

κ

√
neqϕ2D(r) − λδ(x)

]
δ(z). (A7)

Note that the term δρ(r) in Eq. (A4) is not only a self-consistent
term, but also imposes an important geometric restriction by
forcing the rearrangement of charge to occur in the graphene
plane. We solve the Poisson equation (A8) using the Fourier
transform method, viz.,(

q2
x + q2

z

)
ϕeff(qx,qz) = λ

ε0εr
− 2qTFϕ2D(qx) , (A8)

where we have defined qTF = e2√neq/(ε0εrκ) = 4αgkF . Inte-
grating out the qz dependence leads to

ϕ2D(qx) ≡
∫

dqz

2π
ϕeff(qx,qz) = λ/(2ε0εr)

qTF + |qx | . (A9)

The effective potential in a real space is therefore given by

ϕ(x) ≡ ϕ2D(x) = λ

2ε0εr

∫ ∞

0

dqx

π

cos (qxx)

qTF + qx

, (A10)

or, equivalently,

ϕ(x) = λ

2πε0εr

{
− cos(qTFx)Ci(qTFx)

+ sin(qTFx)

[
π

2
− Si(qTFx)

]}
, (A11)

where Ci and Si denote the cosine and sine integral functions.
The above equation possesses the following asymptotic be-
havior:

ϕ(x) −→
⎧⎨
⎩

λ
2πε0εr

(
1

qTFx

)2
, qTFx � 1,

λ
2πε0εr

ln
(

1
qTFx

)
, qTFx � 1.

(A12)

The obtained expression for the effective potential,
Eq. (A11), is well fitted by the Lorentzian function,

ϕL(x) = λ

2πε0εr

A

B + Cx2
, (A13)

FIG. 8. (Color online) The Thomas–Fermi potential (A11) fit-
ted by the Lorentzian function (A13). Here, qTFa = 0.1, U =
λ/(2πε0εr), and the fitting parameters are A = 1.544, B = 0.780,
and C = 0.046.

where fitting parameters A, B, C can be calculated from the
least-squares method, see Fig. 8. We use Eq. (A13) in the
numerical calculation based on the Kubo approach.

APPENDIX B: SELF-CONSISTENT CALCULATIONS
OF THE CONDUCTIVITY FOR A SINGLE CHARGED LINE

The Thomas-Fermi wave vector qTF entering the effective
scattering potential [see Eq. (2) or (A11)] depends on the
electron density ne. In this Appendix, we check how this
dependence affects the behavior of σ as compared with
the results obtained in Sec. II for a fixed qTF; accounting
for the density dependence makes our effective potential
“self-consistent.”

We perform our calculations as follows. In the Kubo method
used in this study, it is not possible to change the scattering
potential while changing the energy (or density) of the
electrons. We therefore perform independent calculations for
six different values of qTF obtaining six different dependencies
σ = σ (E) and σ = σ (ne) as shown in Figs. 9(a) and 9(b),
respectively. In each dependence σ = σ (ne), we choose only
one particular point (for both n and p types of charge carriers)
where the electron density ne corresponds to qTF used in
the calculation of this dependence (recall that qTF scales as
qTF ∝ √|ne|). Combining these six points on a single plot
yields a self-consistent curve σ = σ (ne) as shown in Fig. 9(c).
Figure 9 clear demonstrates that energy and electron density
dependencies of conductivity exhibit respectively linear and
sublinear behaviors, which are the same as corresponding
behaviors of the conductivities for the case of a fixed qTF,
see Fig. 4. Note that electron-hole asymmetry in Fig. 9 is
weak since the source of disorder here is due to a single line
only (c.f., with 10 and 50 lines in Fig. 4).

APPENDIX C: SCATTERING AMPLITUDES IN THE
SECOND BORN APPROXIMATION

The scattering problem (Ĥ0 + V̂ − E)�k = 0, where H0

denotes the free Hamiltonian and V̂ a potential, has the formal
solution

�k = φk + Ĝ0V̂ �k , (C1)
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FIG. 9. (Color online) Conductivity vs the energy (a) and electron density (b), (c) for nonself-consistent (a), (b) and self-consistent
(c) effective potentials V ∼ U = λ/(2πε0εr) ∈ [0,�] (� = 0.25u) describing a single charged line. Curve in (c) is plotted combining
corresponding values for σ on curves in (b). The correspondence between qTF used in calculations of the potential and respective ne is
indicated in (a) and (b).

where φk solves the free Schrödinger equation (Ĥ0 − E)φk =
0 and describes the state of the incident particles. The
resolvent is given by Ĝ0(z) = 1/(z − Ĥ0), where z includes
an infinitesimally small imaginary part.

In the context of the present work, H0 stands for the
Hamiltonian of pristine graphene in the single Dirac cone
approximation, and V̂ refers to the potential of a charged 1D
defect (see Appendix A). Although the form of V̂ remains
unspecified in what follows it is assumed to be a scalar in both
sublattice and spin spaces. The spinor φk(r) ≡ 〈r|φk〉 has the
form3,50,51

φk(r) = uke
ik·r, (C2)

with

uk = 1√
2

(
1

seiθk

)
. (C3)

In the above, θk ≡ arctan(ky/kx) and s ≡ sign(E). Switch-
ing Eq. (C1) to the position representation, we obtain the
Lippmann-Schwinger equation

�k(r) = φk(r) +
∫

d2r′G0(r − r′)V (r′)�k(r′) , (C4)

where G0(r − r′) = 〈r|Ĝ0(z)|r′〉 is the Green function of the
problem. The graphene Hamiltonian reads

Ĥ0 = h̄vF σ · p̂ , (C5)

and the Fourier transform of the Green function G0(p) =∫
d2r exp (−ip · r) G0(r) is given by

G0(p) = (z − h̄vF σ · p)−1 . (C6)

In what follows, unless stated otherwise, we set h̄ ≡ 1 ≡ vF .
It is also convenient to recast Eq. (C6) in the form

G0(p) = g(p)(z + σ · p) , (C7)

g(p) = (z2 − p2)−1. (C8)

where z = E + is0+; the inclusion of a small imaginary part
is0+ amounts to consider outgoing waves (see below). For
simplicity, we focus on scattering of positive energy carriers
(electrons), s = 1. We write E = k and evaluate the Green

function in real-space representation:

G0(r − r′) = (E − iσ · ∇)
∫

d2p

(2π )2 eip·(r−r′)g(p) (C9)

= − i

4
(k − iσ · ∇)H (1)

0 (k|r − r′|) , (C10)

where H (1)
n (k|r − r′|) is the first kind Hankel function of order

n, whose asymptotic form is that of outgoing cylindrical waves.
Using the property ∂xH

(1)
0 (x) + H

(1)
1 (x) = 0, the second term

in Eq. (C10) can be written in the simple form

σ · ∇H
(1)
0 (k|r − r′|) = −kH

(1)
1 (k|r − r′|)σθ , (C11)

where we have introduced the matrix

σθ ≡
(

0 e−iθ

eiθ 0

)
. (C12)

In the above, the angle θ ≡ θ (r,r′) is defined through the
relation (r − r′)/|r − r′| = (cos θ, sin θ )T .

Combining Eqs. (C10) and (C11), we obtain the explicit
form of the Green function of pristine graphene:

G0(r − r′) = − ik

4

[
H

(1)
0 (k|r − r′|) + iσθH

(1)
1 (k|r − r′|)] .

(C13)

The Lippmann-Schwinger equation now reads

�k(r) = φk(r) − ik

4

∫
d2r′[H (1)

0 (k|r − r′|)

+ iσθH
(1)
1 (k|r − r′|)]V (r′)�k(r′) . (C14)

To proceed, we assume that the main contribution to the
scattering amplitude comes from evaluating the above integral
within the region where |r − r′| � 1. We note that although
this procedure is accurate for short-range potentials, yielding
the exact asymptotic form of the scattered wave function, it is
otherwise an approximation.

The next step is to insert the asymptotic expressions for the
Hankel functions

H
(1)
0 (k|r − r′|) →

√
2

ikπ |r − r′|e
ik|r−r′| , (C15)
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H
(1)
1 (k|r − r′|) → −i

√
2

ikπ |r − r′|e
ik|r−r′|, (C16)

into the Lippmann-Schwinger equation (C14) to get

�k(r) = φk(r) −
√

ik

8πr
eikr

∫
d2r′e−ik′ ·r′

× (1 + σθ )V (r′)�k(r′). (C17)

In the above, we have identified the wave vector at the point
of observation, k′ ≡ k r

r
, and used |r − r′| � r − r · r′/r to

simplify the argument of the exponentials in (C15) and (C16).
The first term in the Born series is obtained by re-

placing �k(r′) → φk(r′) = eik·r′
uk in the right-hand side of

the Lippmann-Schwinger equation. In order to read out the
scattering amplitude, a few manipulations are still in order.
Without loss of generality, setting θk = 0, and identifying θk′

with the scattering angle θ , we find

(1 + σθ )uk = (1 + e−iθ )
1√
2

(
1

eiθ

)
(C18)

≡ �(θ )uk′, (C19)

where we have defined graphene’s Berry phase (form factor)
term �(θ ) = 1 + e−iθ . Substituting this result into Eq. (C17),
we arrive at the well-known FBA in two dimensions:

�k(r) = φk(r) + fFBA(θ )√
r

eikruk′ , (C20)

with

fFBA(θ ) = − 1

vFh̄

√
ik

8π
�(θ )Ṽ (q), (C21)

where q = k′−k is the transferred wave vector and the
relevant constants have been restored. We note that the above
definition yields the usual form for the scattered current in
two-dimensions, i.e.,

J (θ ) = 〈�̃k(r)|σθ |�̃k(r)〉 ∝ |fFBA(θ )|2
r

, (C22)

with �̃k(r) ≡ �k(r) − φk(r) denoting the scattered component
of the wave.

We move gears to the calculation of the second term in the
Born series. The starting point is Eq. (C4), which we iterate
two times to get

�k(r) = φk(r) +
∫

d2r′
[
G0(r − r′)V (r′)φk(r′)

+
∫

d2r′′G0(r − r′)V (r′)G0(r′ − r′′)V (r′′)φk(r′′)
]

.

(C23)

We aim to simplify the second-order contribution in the above
expression [from now on referred to as �

(2)
k (r)]. As before, we

replace G0(r − r′) by its asymptotic form,

G0(r − r′) → −
√

ik

8πr
eikre−ik′ ·r′

σ̃θ , (C24)

with σ̃θ ≡ 1 + σθ , and insert it back into �
(2)
k (r) as to obtain

�
(2)
k (r) = −

√
ik

8πr
eikrϒkk′ , (C25)

where

ϒkk′ =
∫

d2r′d2r′′e−ik′ ·r′
σ̃θV (r′)G0(r′ − r′′)V (r′′)φk(r′′) .

(C26)

It is clear that σ̃θ does not commute with the remaining terms
in the integrand [remark that G0(r′ − r′′) contains a term
proportional to σα with α ≡ θ (r′,r′′) �= θ ; c.f., Eq.(C13)], and
hence we cannot directly identify the scattering amplitude as
previously. Instead, we make use of Eq. (C9) to write

ϒkk′ =
∫

d2p

(2π )2 g(p)
∫

d2r′′V (r′′)e−i(p−k)·r′′

+
[∫

d2r′e−ik′ ·r′
V (r′)σ̃θ

(
k − iσ · ∇′) eip·r′

]
uk ,

(C27)

or, using the definition of Fourier transform,

ϒkk′ =
∫

d2p

(2π )2 Ṽ (p − k) [σ̃θG0(p)] Ṽ (k′ − p)uk . (C28)

In order to identify the scattering amplitude in the second Born
approximation (SBA) we compute the contribution of �

(2)
k (r)

to the scattering flux. Neglecting terms of fourth order in the
scattering potential, we find

JSBA(θ ) = 〈�̃k(r)|σθ |�̃k(r)〉 = J (θ ) + δJ (θ ) ,

with J (θ ) given by Eq. (C22) and

δJ (θ ) = −f ∗
FBA(θ )

r

√
ik

8π
〈uk′ |σθ |ϒkk′ 〉 + c.c. (C29)

Using

√
2σ̃θ (k + σ · p) uk =

(
�(θ )k + pe−iφp + pei(φp−θ)

�(−θ )k + peiφp + pei(θ−φp)

)
,

(C30)

where φp = arctan(py/px), we arrive at the following result:

〈uk′ |σθ |ϒkk′ 〉 =
∫

d2p
(2π )2

Ṽ (p − k)[k + pe−iφ

+pei(φ−θ) + ke−iθ ]Ṽ (k′ − p) . (C31)

By the definition of scattered current JSBA(θ ), the SBA
scattering amplitude is readily seen to be

fSBA(θ ) =
√

k

8π

{
�(θ )Ṽ (k′ − k)

+
∫

d2p
(2π )2

Ṽ (k′ − p)[�(θ )(k + p cos φp)

+�̄(θ )ip sin φpg(p)]Ṽ (p − k)

}
, (C32)

where we defined �̄(θ ) = �(θ + π ) and dropped an innocuous
phase factor −√

i. We now specialize to potentials with
inversion symmetry; these potentials have Ṽ (q) = Ṽ (q)∗ and
therefore we can drop the imaginary term in the last line of
Eq. (C32), which is odd under the transformation θ → −θ ,
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and hence does not contribute to transport cross sections. We
thus arrive at our desired result:

fSBA(θ ) = �(θ )

√
k

8π

[
Ṽ (k′ − k) +

∫
d2p

(2π )2

+ Ṽ (k′ − p)(k + p cos φp)g(p)Ṽ (p − k)

]
,

(C33)

or, in a more compact form:

fSBA(θ ) = �(θ )

vFh̄

√
k

8π

[
Ṽ (k′ − k) +

∫
d2p

(2π )2

+Ṽ (k′ − p)〈uk|G0(p)|uk〉Ṽ (p − k)

]
, (C34)

where h̄ and vF have been restored.

APPENDIX D: CALCULATION OF SECOND BORN
AMPLITUDE FOR A CHARGED LINE

In this Appendix, we evaluate the SBA transport cross
section for a charged line with potential given by Eq. (16).
We perform an analytical calculation of the I1 contribution
[see Eq. (12)] and evaluate the remaining contribution [see
Eq. (13)] numerically. The term I1 requires to evaluate the
following integral:

η1 =
∫

d2p

(2π )2

1

k2 − p2 + i0+

× 1

qTF + |px − kx |
1

qTF + |k′
x − px | , (D1)

which we do by first performing the integration over ky to get

η1 =
∫

dpx

2π

i

2p0

1

qTF + |px − kx |
1

qTF + |k′
x − px | , (D2)

where p0 = √
k2 − p2

x + i0+. To proceed, we divide the
integration range into four subintervals: px � kx , kx > px �
k′
x , k′

x > px � −kx and px < −kx . Each of these contributions
has a solution in terms of simple functions. We give the
explicit solution for the real part of η1. Since p0 becomes
pure imaginary for |px | � k, we have

Re η1 = 1

2

(∫ −k

−∞

dpx

2π

1√
p2

x − k2

1

qTF − px + kx

× 1

qTF + k′
x − px

+
∫ ∞

k

dpx

2π

1√
p2

x − k2

× 1

qTF + px − kx

1

qTF − k′
x + px

)
. (D3)

Without loss of generality we set kx = k, k′
x = k cos θ . The

integral above then acquires the form

Re η1 = 1

32παg

χ (θ )

k2
F (1 − cos θ )

, (D4)

with k = kF and

χ (θ ) = −2 arccos(1 + 4αg)

i
√

1 + 1
2αg

+ π + 2 arcsin(1 − 4αg)√
−1 + 1

2αg

− 8αg arccos(4αg − cos θ )√
1 − (4αg − cos θ )2

+ 8αgarccosh(4αg + cos θ )√
(4αg + cos θ )2 − 1

, (D5)

and where we used qTF = 4αgkF . The remaining term to be
computed reads

η2 =
∫

d2p

(2π )2

px

k2 − p2 + i0+

× 1

qTF + |k′
x − px |

1

qTF + |qx − kx | . (D6)

The explicit form of η2 is rather cumbersome and thus will not
be given. The differential cross section is

σ (θ ) = |f1(θ ) + f2(θ )|2 , (D7)

where f1(2) denotes the first (second) order contribution to
the SBA amplitude [see Eq. (C34)]. Defining h1(2)(θ ) ≡
f1(2)(θ )/�(θ ), we obtain

σ (θ ) = |�(θ )|2{h1(θ )2 + 2Re[h2(θ )]h1(θ ) + O(�4)}, (D8)

and where we have used the fact that h1(θ ) ∈ R for potentials
with inversion symmetry. The first term yields the FBA
transport cross section

σ
(FBA)
tp =

∫ 2π

0
dθ (1 − cos θ ) |f1(θ )|2

= kF

8π

(
L�

h̄vF

)2 ∫ 2π

0
dθ

(1 − cos θ ) |�(θ )|2
[2kF sin2(θ/2) + qTF]2

=
(

L�

h̄vF

)2
Q1(α)

kF

, (D9)

with

Q1(αg) ≡ 1

8π

∫ 2π

0
dθ

(1 − cos θ )|�(θ )|2
[2 sin2(θ/2) + 4αg]2

. (D10)

Remark that the transport relaxation rate is related to σtp ac-
cording to τ = (nlvF σtp)−1 ∼ kF , and therefore we conclude
that the dc conductivity

σ = 2e2

h
vF kF τ (kF ) = 2e2

h

kF

nlσtp(kF )
, (D11)

is a quadratic (linear) function of the Fermi wave vector
(electronic density). The latter property is preserved at all
orders in perturbation theory as noted in Sec. III.

The second term in Eq. (D8) yields the main correction to
the FBA transport cross section; explicitly,

δσtp = kF

8π

(
L�

h̄vF

)3

2kF

∫ 2π

0
dθ (1 − cos θ )

× |�(θ )|2 Re [η1(θ ) + η2(θ )]

2kF sin2(θ/2) + qTF
. (D12)
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Simplifying one obtains

δσtp =
(

L�

h̄vF

)3
Q2(αg)

kF

, (D13)

with

Q2(αg) ≡ 1

8π

∫ 2π

0
dθ

(1 − cos θ ) |�(θ )|2
2 sin2(θ/2) + 4αg

ψSBA(θ ) , (D14)

and ψSBA(θ ) ≡ 2k2
F Re [η1(θ ) + η2(θ )] is just a function of θ

and αg [recall that η1(2) varies as k−2
F ; see Eq. (D4)]. Finally,

one obtains for the SBA transport cross section,

σ
(SBA)
tp =

∑
n=2,3

(
L�

h̄vF

)n
Qn−1(αg)

kF

+ O(�4). (D15)

Collecting these results one obtains the following relation
between the SBA and the FBA conductivities:

σ
(SBA)
dc

σ
(FBA)
dc

= σ
(FBA)
tp

σ
(SBA)
tp

= 1 − L�

h̄vF

Q2(αg)

Q1(αg)
+ O

(
L�

h̄vF

)2

.

(D16)

The above result shows that for � > 0 (� < 0) the SBA
decreases (increases) the dc conductivity with respect to the
FBA result. Although only valid in the weak scattering regime,
this dependence of the dc conductivity on the carrier polarity
is in qualitatively agreement with the numerical results of
Sec. II.

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

2M. I. Katsnelson, Mater. Today 10, 20 (2007).
3A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

4A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
5W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad,
X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and
G. Martinez, Solid State Commun. 143, 92 (2007).

6K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H.
Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature (London) 457, 706
(2009).

7S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan,
T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz,
J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnology 5, 574
(2010).

8A. Ferreira, X. Xu, C.-L. Tan, S.-K. Bae, N. M. R. Peres, B.-H.
Hong, B. Ozyilmaz, and A. H. Castro Neto, Europhys. Lett. 94,
28003 (2011).

9F. Banhart, J. Kotakovski, and A. Krasheninnikov, ACS Nano 5, 26
(2011).

10B. W. Jeong, J. Ihm, and G.-D. Lee, Phys. Rev. B 78, 165403 (2008).
11O. V. Yazyev and S. G. Louie, Phys. Rev. B 81, 195420 (2010).
12S. Malola, H. Hakkinen, and P. Koskinen, Phys. Rev. B 81, 165447

(2010).
13H. S. Song, S. L. Li, H. Miyazaki, S. Sato, K. Hayashi, A. Yamada,

N. Yokoyama, and K. Tsukagoshi, Sci. Rep. 2, 337 (2012).
14X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,

A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo,
and R. S. Ruoff, Science 324, 1312 (2009).

15S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C.
Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602
(2008).

16X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat.
Nanotechnology 3, 491 (2008).

17K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg,
J. Hone, P. Kim, and H. L. Stormer, Solis State Comm. 146, 351
(2008).

18J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, Nat. Nano.
5, 326 (2010).

19J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Nato Lett. 8,
565 (2008).

20A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature
(London) 430, 870 (2004).
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