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Self-consistent tight-binding model of B and N doping in graphene
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Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding
approach. An analytical result for the impurity Green’s function is derived taking broken electron-hole symmetry
into account and validated by comparison to numerical diagonalization. The impurity potential depends
sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using
the impurity Green’s function and determine the self-consistent local density of states at the impurity site and,
thereby, identify acceptor and donor energy resonances.
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I. INTRODUCTION

Control over carrier densities is essential for realization
of graphene-based electronic, plasmonic, opto-electronic, and
transparent conductive devices.1–3 Intrinsic carrier mobilities
in graphene are exceptionally high,4 and carriers can be
supplied either actively via gating4,5 or passively via chemical
doping.6–9 Particular attention has been paid to chemical
doping via substitutional impurities such as boron and nitrogen
providing p- and n-type doping, respectively. These species are
found to be readily accommodated by the graphene lattice,9,10

thus paving the way for practical devices.
In the simplest theoretical model of graphene doping, such

impurities simply enter via a fixed donor or acceptor level,
similar to the case of gapped semiconductors. Realistically,
however, for a metallic or semimetallic material, impurity
levels are coupled to the entire continuum of bulk states,
and a much more accurate picture may be provided by the
energy-dependent local density of electronic states at the
impurity sites. Donor or acceptor levels may subsequently be
identified as resonances in the local density of states. Several
publications have investigated this problem at ab initio11–13

and tight-binding13–21 levels. The tight-binding approach is
obviously highly suited for analysis of localized impurity
states. Moreover, the long-range nature of impurity-impurity
interactions requires rather large simulation cells, making first-
principles calculations challenging.12,13 A simple, orthogonal
nearest-neighbor tight-binding model is capable of qualita-
tively modeling several impurity-related properties.15,16,18 The
implicit assumptions, such as perfect electron-hole symmetry,
are problematic, however. This deficiency may be partly
relieved by the inclusion of next-nearest-neighbor terms17

or overlap corrections.19 Finite overlap corrections may also
be implemented for adsorbate interactions with graphene.20

Equally questionable is the choice of tight-binding parameters.
In particular, the precise value of the impurity potential is
crucial for the predicted properties. Therefore, this parameter
is often treated as an adjustable variable. In fact, a single,
fixed value is unlikely to capture the correct behavior because
the impurity potential depends in a sensitive manner on
the electron occupation n at the impurity site. In the self-
consistent charge tight-binding approach, the n-dependence
of the impurity potential is linearized around the neutral-atom
value with the slope identified as the Hubbard U -parameter.22

Hence, with this extension of the tight-binding approach, an
accurate impurity potential can be found from a self-consistent
solution of the electronic problem.

In this paper, we adopt a self-consistent tight-binding
approach to N- and B-doping in graphene. The density-
functional–based approach to computation of tight-binding
parameters (DFTB) has previously been successfully ap-
plied to graphene nanostructures,23–25 and we apply this
method for all on-site parameters. Moreover, nonorthogonality
between neighbor orbitals is retained via a nonvanishing
overlap integral. This ensures broken electron-hole symmetry
in agreement with first-principles results. The presence of
nonorthogonality complicates slightly the impurity Green’s
function, but we demonstrate that relatively simple analytical
expressions can be derived in terms of the result for the
orthogonal case. We then apply this Green’s function to
solve the self-consistency issue. Our strategy is to combine
results for the impurity occupancy derived by integrating the
local density of states with the general occupancy-dependent
impurity on-site energy. In this manner, unique B- and N-
impurity potentials are determined. In turn, this allows us to
identify acceptor and donor resonance energies.

II. SELF-CONSISTENT TIGHT-BINDING MODEL

In our model, we assume an infinite graphene sheet, in
which a single atom has been substituted by an impurity,
forming so-called graphitic impurities. The perturbed π states
are found as eigenstates of a Hamiltonian H = H0 + H1 with

H0 =
∑

i

εp |i〉 〈i| −
∑
i,j

tij |i〉 〈j | , H1 = � |1〉 〈1| . (1)

Here, εp is the carbon on-site energy, and the last term in
H0 describes hopping between sites i and j with hopping
integral tij . The sum generally covers all pairs of different
sites, but in order to find an analytical solution, we limit
the sum to nearest neighbors. The added part H1 is the
impurity Hamiltonian taking |1〉 as the impurity site. Hence,
the total impurity on-site energy is εp + �. The value of the
hopping integral tij depends on the atomic species forming
the bond and, hence, differs from the bulk value around the
impurity. We will ignore this complication, however, and
use the bulk graphene value tij ≡ t ≈ 3eV in all cases.26
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FIG. 1. Schematic illustration of the impurity model assuming
identical hopping and overlap integrals between all nearest neighbors.

Finally, we do not make the usual assumption of orthogonal
neighbor π states. The value of the overlap s = 〈i | j 〉 for i

and j nearest neighbors differs between various tight-binding
parameterizations, with common choices being s = 0.129
(Ref. 26) up to as high as s = 0.267 (Ref. 27). Below, we vary
s between 0 and 0.15 (regarding s ≈ 0.15 as the physically
realistic value), and, as will be demonstrated, this correction
has a very significant impact on impurity resonance energies.
In DFTB, the computed values of s at a separation of 1.42 Å
are 0.149 and 0.130 for C-C and C-N pairs, respectively. The
inaccuracy of assuming identical values of s can therefore
be estimated as roughly 13%. For the hopping integrals, the
corresponding number is as small as 4%. Hence, the proposed
model corresponds schematically to the picture in Fig. 1. Since
identical hopping and overlap integrals are assumed for all
nearest neighbors, the nature of the impurity is determined
entirely through the impurity potential �.

The on-site energies obviously play a crucial role in the
problem. A general on-site energy ε depends on the electron
occupancy of the atom n so that ε = ε(n),22,28 where 0 � n �
2. In practice, we will apply the linearized relation

ε ≈ ε0 + U · (n − n0), (2)

where ε0 is the neutral-atom value, U is the Hubbard U

parameter, and n0 is the electron occupancy of a neutral atom.
In all cases considered here (B, C, and N), three valence
electrons are assumed given up to the σ bond network. Hence,
n0 is 0, 1, and 2 for the three species, respectively. In the
spirit of density-functional–based tight-binding, the remaining
parameters ε0 and U are found from a density-functional
calculation of the 2p atomic eigenvalue and the numerical
derivative of the eigenvalue with respect to electron number,
respectively.28 We apply the local density approximation in the
Perdew-Zunger parameterization29 without spin-polarization,
yielding the results shown in Table I. We thus take εp =
− 5.43 eV. The Hubbard U parameters determine the energetic
cost of occupying the impurity. In this connection, we note that
by assuming a purely local interaction derived for an isolated
atom and, accordingly, ignoring electron-electron interactions

TABLE I. Atomic on-site parameters.

Atom On-site energy ε0 (eV) Hubbard U (eV)

B − 3.74 7.8
C − 5.43 9.7
N − 7.25 11.5

with neighbor sites, we may overestimate the Coulomb cor-
rection. In fact, Schlüter et al.30 find that nonlocal interactions
reduce the effective Hubbard U by about 50%. Below, we
therefore consider both isolated-atom and effective U values in
the numerical evaluations. Note, that the dependence of on-site
energies on electron occupation constitutes a self-consistency
problem. Since electron occupation is a sensitive function
of on-site energies, we generally need an iterative approach.
Starting from an initial value of n, the electron occupancy
is repeatedly updated via the charge computed using the
corresponding on-site values until convergence is reached.
Below, we will show how an analytic approach is able to
bypass this obstacle.

The present nonorthogonal tight-binding model can be
solved numerically as a generalized eigenvalue problem
for large but finite geometries. By duplicating the original
graphene unit cell, we construct an N by N supercell
containing 2N2 atoms, among which one is the impurity.
We use periodic boundary conditions to eliminate finite-size
effects in the results. Note, however, that interactions among
impurities in neighboring supercells will affect the results if
N is not sufficiently large.12,13 The resulting matrix problem
reads (H0 + H1) · cn,�k = En,�k S · cn,�k , where n and �k label
band and k-vector, respectively, S is the overlap matrix, and
En,�k and cn,�k denote eigenvalues and eigenvectors. If a total of
N�k k-points in the irreducible Brillouin zone are sampled, the
local density of states L(ω) on the impurity site is evaluated
numerically as

L(ω) = 1

N�k

∑
n,�k

ρ
(1)
n,�kδ(ω − En,�k),

(3)
ρ

(i)
n,�k = Re

{
c(i)∗
n,�k

∑
j

Sij c(j )

n,�k

}
,

where ω is the energy. The expression for the weight ρ
(i)
n,�k

differs from the standard result in that overlap corrections
are accounted for.22 Eventually, assuming zero temperature
conditions, the impurity electron occupancy is found by
integrating L(ω) below the Fermi level EF .

III. ANALYTICAL GREEN’S FUNCTION APPROACH

While the numerical diagonalization method is accurate for
sufficiently large supercells, it is necessarily rather computa-
tionally demanding. It is possible to accelerate this approach
using recursive Green’s function methods,13,18 even though
complications arise from the presence of the overlap matrix.
Here, we will demonstrate, however, that the problem can be
solved analytically via the Dyson equation. We will show that
knowledge of the solution for the standard, orthogonal problem
can be adapted to tackle the present, nonorthogonal problem.
This analytical approach greatly simplifies the subsequent
analysis and allows for a simple solution of the self-consistency
relations.

The analytical approach revolves around the retarded
Green’s function G(ω), which provides the local density of
states L(ω) via L(ω) = −π−1ImG11(ω), where G11(ω) is the
diagonal element associated with the impurity site. Formally,
any nonorthogonal model H · c = ES · c is readily converted
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to a standard one simply by inverting the overlap matrix,
i.e., (S−1 H) · c = Ec. Therefore, the Green’s function of the
nonorthogonal model must be defined as

G(z) = (
z − S−1 H

)−1 = (zS − H)−1 S ≡ G̃(z)S. (4)

For the impurity model with H = H0 + H1, the unperturbed
Green’s functions are consequently defined as

G0(z) = (
z − S−1 H0

)−1
, G̃0(z) = (zS − H0)−1 . (5)

In this “standard” picture, the perturbation is S−1 H1, and so
the Dyson equation becomes

G(z) = G0(z) + G0(z)S−1 H1G(z). (6)

As G̃0(z) = G0(z)S−1, we have G(z) = (1 − G̃0(z)H1)−1

G0(z), and with a local perturbation

G11(z) = G0
11(z)

1 − �G̃
0
11(z)

. (7)

This relation demonstrates that a nonorthogonal model leads
to the necessity of treating two separate unperturbed Green’s
functions G0(z) and G̃0(z) = G0(z)S−1. For the specific case
of graphene, we will now discuss how these are obtained.

In the usual description of π states in the two-atomic unit
cell of graphene, the assumption of nearest-neighbor hopping
and overlap interactions yields the matrices

H0 =
(

εp −th

−th∗ εp

)
, S =

(
1 sh

sh∗ 1

)
, (8)

where h = 1 + 2 cos
(

1
2kya

)
exp

(
i
√

3
2 kxa

)
is the sum of

nearest-neighbor Bloch phases with a defined as the graphene
lattice constant. Now, the fact that h enters in the off-diagonal
elements of both matrices means that we can apply a previously
used trick to reformulate the problem.31,32 By transferring the
off-diagonal elements of S to the left-hand side, the generalized
eigenvalue problem H0 · cn,�k = En,�k S · cn,�k is transformed
into a standard one, h0 · cn,�k = εn,�kcn,�k , with the relations

h0 =
(

0 −th

−th∗ 0

)
, En,�k = εn,�k + εp

1 − εn,�k
s
t

. (9)

Using simple manipulations, it is then straightforward to
demonstrate that

G0
11(z) = 1

	BZ

∑
n

∫
1

z − En,�k
d2k

= 1

1 + z s
t

· 1

	BZ

∑
n

∫
1 − εn,�k

s
t

z−εp

1+z
s
t

− εn,�k
d2k, (10)

where 	BZ is the Brillouin zone area. If we next introduce the
Green’s function of the standard problem

g0(z) = 1

	BZ

∑
n

∫
1

z − εn,�k
d2k, (11)

we find

G0
11(z) = 1 + εp

s
t(

1 + z s
t

)2 g0

(
z − εp

1 + z s
t

)
+ s

t + zs
. (12)

FIG. 2. (Color online) Green’s function of the orthogonal (upper
panel) and nonorthogonal s = 0.15 (lower panel) models. In the
lower panel, the circle indicates the pole contribution to the impurity
occupancy.

Moreover,

G̃
0
11(z) = 1

1 + z s
t

g0

(
z − εp

1 + z s
t

)
. (13)

Thus, the required Green’s functions of the nonorthogonal
problem follow directly from the solution to the standard
orthogonal case. This problem has been studied in detail
previously,33 and the result can be written as34

g0(z) = sign(z)Re{3G(|z|) + G(−|z|)}
+iIm{G(|z|) − G(−|z|)},

G(z) =
√

z

2πit3/2
K

[
(3t − z)(t + z)3

16zt3

]
, (14)

where the Mathematica definition of the complete elliptic
integrals K(x) = ∫ π/2

0

(
1 − x sin2 θ

)−1/2
dθ is applied. The

standard and modified Green’s functions for s = 0.15 are
shown in Fig. 2. The functions differ in two obvious ways: a
(trivial) shift due to the nonvanishing εp and a clearly broken
electron-hole symmetry due to the nonvanishing overlap s.

IV. RESULTS

To verify the main results from Eqs. (7), (12), and (13),
we compare in Fig. 3 the local density of states computed
using either numerical or analytical methods. We consider
here a donor impurity problem and take � = − 5 eV as
well as s = 0.15. The numerical result is obtained from the
supercell approach described above using N = 36, i.e., a cell
containing 2592 atoms. Moreover, we sample 5050 k-points
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FIG. 3. (Color online) Energy dependence of the local density
of states (DOS) computed by numerical diagonalization (solid lines)
and analytically (dashed lines). Both perturbed (� = − 5 eV) and
unperturbed (� = 0) cases are shown.

in the irreducible wedge of the Brillouin zone. Such large
supercells are required because of the long-range nature
of impurity-impurity interactions.13 While this is a rather
demanding computation, the analytical formula provides an
answer with very little computational effort. We note the
excellent agreement between the two approaches. Note also,
as discussed in detail below, that the numerical result includes
the pole contribution around − 11.4 eV, which is absent in the
analytical counterpart, as we only plot the regular (principal
value) part. Hence, this example validates the developed
method of computing the local density of states.

Next, we consider the electron occupancy of the impurity
given by

n = −π−1
∫ EF

−∞
ImG11(ω)dω. (15)

For a finite impurity density, the Fermi level EF depends on
the density. Here, very dilute doping and consequently low im-
purity density will be assumed, however. Hence, EF coincides
with εp throughout. Inspection of Eq.(7) demonstrates that
there are two contributions to n. Primarily, G0(ω) and G̃0(ω)
have finite imaginary parts in the energy range ω ∈ [ω−,ω+]
with ω± = (εp ± 3t)/(1 ∓ 3s). In addition, however, a pole
contribution is found whenever � < 0. From Eq. (7), it
follows that the pole location ω0 is determined by the condition
1 − �G̃

0
11(ω0) = 0. This point is indicated by the encircled

intersection in the bottom panel of Fig. 2 and is responsible
for the delta function–like contribution in the numerical results
in Fig. 3. Hence, the total impurity occupancy is given by

n = −π−1
∫ εp

ω−
Im

{
G0

11(ω)

1 − �G̃
0
11(ω)

}
dω − G0

11(ω0)

�∂ G̃
0
11/∂ω|ω=ω0

.

(16)

For � > 0, the pole condition still has a solution, but no
contribution to n is obtained because ω0 > EF in this case. In
this manner, we find the � dependence of the occupancy, as
illustrated in Fig. 4. The central part near � = 0 is excluded
because of numerical instabilities in this range. Note that n

FIG. 4. (Color online) Occupancy of an impurity versus po-
tential � (blue curve). The straight lines are derived from the
occupancy-dependent on-site potentials of N (red) and B (green)
atoms, respectively. Both isolated-atom (full) and effective (dashed)
Hubbard parameters are considered. The intersections correspond to
self-consistent solutions.

approaches 0 and 2 for high and low potentials, respectively,
as expected.

We are now in a position to determine the actual self-
consistent impurity potential for particular doping species. The
impurity on-site energy is ε = εp + �, and so Eq. (2) can be
recast as

n = εp + � − ε0 + Un0

U
. (17)

This linear dependence on � is included as the straight lines
in Fig. 4 for N-doping (red lines) and B-doping (green lines),
respectively, using the parameters of Table I (full lines) as
well as effective Hubbard parameters found by reducing the
isolated-atom values by 50% 30 (dashed lines). It follows
that the self-consistent impurity potentials can be determined
simply as the intersections, and, in this manner, we find
� = − 5.13 eV and � = 4.93 eV for N- and B-doping,
respectively, using isolated-atom U values. The corresponding
occupancies are n = 1.71 and 0.41. If instead effective U

values are used, the impurity potentials are � = − 4.06 eV and
� = 3.70 eV, respectively, and the occupancies become n =
1.61 and 0.51. These results demonstrate that by incorporating
self-consistency, the present work expands the applicability of
previous nonorthogonal tight-binding models such as Ref. 20.

Having determined the impurity potentials, we can investi-
gate the actual local density of states L(ω) curves. Of particular
importance are the resonances corresponding to donor levels
for N-doping and acceptor levels for B-doping. Such reso-
nances are identified as maxima in L(ω) immediately above
or below the Fermi level, respectively. From the plot in Fig. 5,
these resonances are easily identified. Here, we have plotted
results using the impurity potentials determined above based
on isolated-atom U values. To illustrate the rather significant
importance of the overlap s due to nonorthogonality, we have,
in addition, included curves for s smaller than 0.15. For s =
0.15, we find an N donor level of 0.94 eV and a B acceptor
level of − 0.79 eV, both measured relative to the Fermi level.
As s decreases, both of these move away from the Fermi level.
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FIG. 5. (Color online) Local density of states (DOS) for N- (top)
and B-impurities (bottom). Results for different values of the overlap s

are shown. The insets display the s dependence of donor and acceptor
resonances, both relative to the Fermi level.

In fact, for s = 0, both levels are located almost twice as far
from the Fermi level as the original values. This very clearly
demonstrates the significance of overlap corrections for an
accurate determination of impurity levels.

V. SUMMARY

We have presented an analytical model of impurity levels
in graphene and applied it to N- and B-doping. The model
incorporates nonorthogonality via nearest-neighbor overlap
corrections, and the local density of states on the impurity site
is obtained from analytical Green’s functions. The impurity
potential is subject to a self-consistency condition, which
we solve via the impurity occupancy. In this manner, self-
consistent impurity potentials for N- and B-dopants have been
determined. Our results demonstrate that nonorthogonality has
a significant impact on the self-consistent solution. Finally, we
have applied this procedure to identify the associated donor
and acceptor levels from resonances in the computed impurity
density of states.
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