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We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene
is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices
enable localized states to emerge in the central waveguide region. We model the waveguides via a position-
dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion
relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use
a tight-binding model, which is in excellent agreement with the analytical results. The waveguides resemble
graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the
edge. We show that electrons can be guided through kinks without additional resistance and that transport
through the waveguides is robust against structural disorder.
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I. INTRODUCTION

Graphene, the two-dimensional allotrope of carbon first
isolated in 2004,1,2 has emerged as a highly attractive mate-
rial for future electronic devices. Graphene has exceptional
electronic properties, as demonstrated in its extremely high
carrier mobility,3 which even at room temperature is limited
predominantly by impurity scattering.4 Already, extremely
fast graphene-based transistors have been realized,5 and
fabrication methods have emerged which allow for large-scale
production of single-layered graphene.6 One key element of
future graphene-based electronics is the ability to localize
carriers in graphene wires, in order to facilitate electronic
graphene networks. The most immediate way of realizing
such wire structures is by cutting graphene into so-called
graphene nanoribbons (GNRs).7 Quantum confinement will
in general induce a band gap in such structures, the mag-
nitude of which scales with the inverse of the width of
the GNR. However, the exact atomistic configuration
of the edge of the ribbon greatly influences the magnitude
of this gap, with particular edge configurations resulting in
vanishing gaps or localized edge states.8,9 An alternative to
this is to rely on controlled generation of extended defects
in graphene to act as metallic wires.10 Relying on results
from two-dimensional electron gases (2DEGs) formed at
the interface of semiconductor heterostructures, one could
also imagine applying electrostatic gating to define wire
geometries. Graphene presents an interesting challenge in
this regard via the phenomenon of Klein tunneling,11 which
makes it difficult to achieve carrier localization in graphene
via ordinary gating. Electrons impinging on a potential barrier
at close to normal incidence are transmitted with vanishing
reflection, regardless of the height of the potential barrier. In
spite of this, guiding of electrons via electrostatic gating has
been demonstrated experimentally,12 albeit with the caveat
that guiding is restricted to a specific range of wave vectors for
which Klein tunneling is negligible. In contrast, a so-called
mass term in graphene provides confinement that is a close
analog of gate-defined localization in an ordinary 2DEG. This

term originates from a Dirac description of graphene, which
emerges as a low-energy approximation of a tight-binding (TB)
model on the honeycomb lattice.13 Adding a diagonal term ±�

to the resulting Hamiltonian, with the sign alternating between
the two sublattices of graphene, the spectrum becomes that of
gapped graphene, a semiconductor with an energy gap of twice
the mass term. This staggered potential is commonly denoted
a mass term due to the analogy of the low-energy carriers in
graphene with massless Dirac fermions, which acquire a mass
via such a term in the Hamiltonian.

In this paper, we propose realizing a waveguiding structure
in graphene via graphene antidot lattices (GALs). GALs are
nanostructured graphenes, which in their simplest description
take the form of periodically perforated graphene structures.14

GALs have recently been produced experimentally with
both electron-beam lithography15,16 and block copolymer
lithography.17,18 The periodic perforation induces a band gap
in graphene, rendering it semiconducting, and the resulting
band structure closely resembles that of gapped graphene in
the low-energy limit. GALs thus allow for the realization of a
position-dependent mass term, as illustrated in Fig. 1. The idea
is to sandwich a region of pristine graphene between two GAL
regions, the band gaps of which define an energy range for
which localized guided modes are expected to emerge in the
central region. This idea is closely analogous to how photonic
waveguiding is realized in photonic crystal structures.19 We
note that other methods beside GALs have been proposed for
achieving gaps in graphene via superlattices, such as, e.g.,
patterned hydrogenation20 or superlattices of boron nitride
islands embedded in graphene.21 Another alternative is to
sandwich graphene between hexagonal boron nitride, which is
predicted to induce significant band gaps in graphene.22

We denote a waveguide geometry as {L,R}zz/ac
N , where L

is the sidelength of the hexagonal unit cell of the surrounding
GAL, while R is the radius of the perforations, both in units of
the graphene lattice constant, a = 2.46 Å. The width W of the
waveguide is defined via N ≡ W/w, where w is the width of
the enlarged GAL unit cell, as illustrated in the lower panel of
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FIG. 1. (Color online) Upper panel: conceptual illustration of
a graphene antidot lattice (GAL) waveguide. A central region of
pristine graphene is surrounded by GAL regions, the band gaps of
which confine states to the waveguide region. Translational symmetry
is assumed in the y direction, which is along the longitudinal
direction of the waveguide. Lower panel: geometry of a {7,3}zz

2 GAL
waveguide. Black dots show the location of carbon atoms. Bloch
boundary conditions are imposed on all boundaries. The dashed lines
illustrate the enlarged GAL unit cell, the width of which we denote by
w. The lowest-energy waveguide mode at the � point, calculated via
the tight-binding model, is illustrated with circles, the size of which
shows the absolute value |ψ(x,y)| of the (real-valued) eigenstate,
while the color indicates the sign.

Fig. 1. The width of the waveguide is of course somewhat more
ambiguous than in the case of GNRs, as we have no sharp edge
defining the precise boundary between the region of pristine
graphene and the surrounding antidot lattice. For denoting
the geometries we simply take W as the distance between
the nearest edges of the two bordering antidot lattice unit
cells. However, as we discuss below, the effective waveguide
width is slightly larger than this. The width w of the enlarged
GAL unit cell depends on the orientation of the waveguide
with respect to the graphene lattice, which we indicate with
the superscript, with zz (ac) denoting a waveguide with the
longitudinal direction along the zigzag (armchair) orientation
of the graphene lattice. Note that in both cases we choose
the orientation of the GAL such that the superlattice basis
vectors lie parallel to carbon-carbon bonds, to ensure that
a band gap always exists for the GAL.23 The lower panel
of Fig. 1 illustrates the geometry of a {7,3}zz

2 waveguide.
For simplicity we restrict the width of the waveguide to be
an integer multiple of the width of the GAL unit cell. This
is merely for computational convenience, and as we will
demonstrate in this paper simple scaling laws exist to predict
the properties of more general widths of the waveguide.

In this paper, two different methods will be employed to
determine the waveguiding properties of GAL waveguides.
We first consider a model based on the Dirac approximation,
including the influence of the GAL barriers via a position-
dependent mass term. We will show that this model admits
analytical solutions in certain limits, which is highly beneficial
for determining the general dependence of the waveguide
properties on the various structural parameters. Furthermore,
these results demonstrate clearly the unique properties of
graphene waveguiding compared to quantum-well structures

defined in ordinary 2DEGs. To include the atomistic details
of the structures we also consider a tight-binding model,
which we use to calculate the transmission properties of the
waveguides, taking into account potential structural disorder.

II. DIRAC MODEL

A. Analytical derivation

We first consider a simple model of a GAL waveguide based
on a Dirac model of graphene. For graphene nanoribbons,
the exact edge geometry can be included in a Dirac model
via the boundary conditions of the spinor components in
each valley.9,24 However, in our case, no atomically defined
boundary exists between the central region and the bordering
GAL regions and we thus adopt a model wherein the band
gap Eg of the confining GALs is included via a position-
dependent mass term. We introduce dimensionless coordinates
(χ,γ ) = 2/W × (x,y) and dimensionless energies ε = E/E0,
with E0 = 2h̄vF /W � 1.278 eV nm×W−1, assuming a Fermi
velocity vF = 106 m/s of graphene. In these units, the
eigenvalue problem for the spinor eigenstates reads[

m(χ ) −i(∂χ − i∂γ )

−i(∂χ + i∂γ ) −m(χ )

][
φA(χ,γ )

φB(χ,γ )

]
= ε

[
φA(χ,γ )

φB(χ,γ )

]
,

(1)

where the dimensionless mass term m(χ ) = δ = Eg/(2E0)
for |χ | > 1 and zero otherwise. This equation has been
derived from the Dirac Hamiltonian HK , which emerges as
a linearization of a TB model of graphene near the K point.
We will discuss the differences between the two inequivalent
K and K ′ valleys of graphene below. Note that the sign of
the mass term is arbitrary and that changing it has no physical
significance but merely results in an interchange of the two
spinor components. We stress, however, that the sign should
be the same on both sides of the central waveguiding region.
The Hamiltonian commutes with the y component of the
momentum operator, and we thus take spinor components
of the form φA(χ,γ ) = f (χ )eiκγ and φB(χ,γ ) = g(χ )eiκγ ,
where κ = kW/2 is the dimensionless Bloch wave vector
along the longitudinal direction of the waveguide. As the
mass term is piecewise constant, the equations for the spinor
components can be decoupled in each region of the waveguide
structure. We look for bound states and thus take ε2 < δ2.
The normalizable solutions for the first spinor component thus
read f (χ ) = A±e±βχ for |χ | > 1 and f (χ ) = B cos(αχ ) +
C sin(αχ ) for |χ | < 1 while the second component is given
via g(χ ) = i(κ − ∂χ )f (χ )/[ε + m(χ )]. Here, we have defined
α = √

ε2 − κ2 and β = √
δ2 + κ2 − ε2. The requirement of

continuity of both spinor components at the boundaries of the
central waveguide region leads to a transcendental equation for
the energies,

√
δ2 − α2 = α tan 2α, regardless of which valley

is considered (see below). The solution of the problem is thus
closely reminiscent of that of an ordinary one-dimensional
square-well potential, albeit with the crucial difference that
for graphene E ∝ α rather than E ∝ α2, as a consequence
of the linear dispersion relation of graphene. Also, we note
that, contrary to the case of the Schrödinger equation, the
derivative of the eigenstate spinors need not be continuous at
the boundary.
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B. Infinite mass limit

The standard textbook graphical solution suggests that there
are N bound states in the waveguide if (N − 1)π/2 < δ <

Nπ/2. In general, the energies and spinor components of these
states will need to be determined by numerical solution of the
transcendental equation. However, in the limit of an infinite
mass term, δ → ∞, the problem admits an analytical solution
for the energies:

ε∞
ns (κ) = s

√
κ2 + π2

4

(
n + 1

2

)2

, n = 0,1,2 . . . , (2)

or, reverting to ordinary units,

E∞
ns (k) = s

√
E2

b(k) + h̄2v2
F π2

W 2

(
n + 1

2

)2

, (3)

where Eb(k) = h̄vF k is the bulk graphene dispersion relation
and s = ±1. The dispersion relations of the waveguide modes
thus resemble those of gapped graphene25 with a mass
term of �eff = (h̄vF π/W )(n + 1

2 ). Series expansion of the
transcendental equation for the energies in the case of a finite
mass term reveals that α � π/2(n + 1/2)[1 + 1/(2δ)]−1, so
the results in the infinite mass limit are expected to be valid
when Eg 	 2h̄vF /W � 1.278 eV nm×W−1. Including the
leading-order correction, the energies are given as

E(1)
ns (k) = E∞

ns (k) − s
2h̄2v2

F π2
(
n + 1

2

)2

W 2
√

k2W 2 + π2
(
n + 1

2

)2
× 1

Eg

. (4)

The eigenstate spinors in the infinite mass limit are most
easily determined by using the boundary conditions derived
by Berry,26 which set a phase relationship between the
spinor components at the edge of the waveguide. The spinor
components for κ = 0 and ε > 0 can then be derived as

fn(χ ) =
{

cos
(
π/2

[
n + 1

2

]
χ

)
for n zero or even

sin
(
π/2

[
n + 1

2

]
χ

)
for n odd

, (5)

while

gn(χ ) =
{

i sin
(
π/2

[
n + 1

2

]
χ

)
for n zero or even

−i cos(π/2[n + 1
2 ]χ ) for n odd

, (6)

for |χ | < 1. Here, we have omitted normalization constants.
We note that, because of the particle-hole symmetry of
graphene, the eigenstates should be normalized separately on
each sublattice.27 The spinors for the ε < 0 eigenstates are
given by exchanging fn and gn. Interestingly, and in stark con-
trast to an ordinary infinite square-well potential, this shows
that in the limit of infinite mass the charge density is evenly
distributed within the waveguide, for states with vanishing
wave vectors. We find that this holds true also in the more gen-
eral case of a finite mass term, the main difference being that in
this case the spinors extend slightly into the mass regions. In-
cluding a nonzero wave vector, the charge density is localized
predominantly on either the edges or the middle of the
waveguide.

The derivation above takes as its starting point a lineariza-
tion of graphene near the K valley. The Dirac Hamiltonian near
the inequivalent K ′ valley is such that the energy spectrum of
the waveguide is the same for both valleys, while the eigenstate

spinors are related by an interchange of the spinor components,
i.e., φK ′

A = φK
B and φK ′

B = φK
A . We also note that to obtain

the full wave function, a Bloch phase factor of eiK·r or eiK′ ·r
should be added to the spinors, with K and K′ depending
on the orientation of the graphene lattice. We will return to
this point below, when we compare the results of the Dirac
approximation with those obtained with a tight-binding model.

III. TIGHT-BINDING MODEL

To include the atomistic details of the waveguide structures,
and to clarify the validity of the results derived in the
Dirac approximation, we employ a nearest-neighbor tight-
binding approximation. This will also allow us to assess the
significance of the orientation of the waveguide with respect
to the graphene lattice. The TB model is parametrized via
a hopping term t = −3 eV between π orbitals, the on-site
energy of which we set to zero. We ignore nonorthogonality
of the π orbitals. Figure 1 illustrates the geometry used for the
TB model in the case of a {7,3}zz

2 GAL waveguide. We use
periodic boundary conditions along the x axis as well as the
y axis. We have ensured that the results are converged with
respect to the number of GAL unit cells included around the
waveguide. The band gap of the GAL is quite well developed
even with just a few rows of antidots,28 so including three
GAL unit cells on each side of the waveguide usually yields
converged results.

IV. RESULTS

A. Dispersion relations

In Fig. 2, we show the band structure of a {7,3}zz
5 GAL

waveguide calculated using the TB model as well as the Dirac

FIG. 2. (Color online) Left: band structure of the {7,3}zz
5 GAL

waveguide. The band structures are shown for the tight-binding
model as well as the analytical infinite mass-limit results E∞

ns and
numerical solution of the transcendental equation of the Dirac
approximation Ens. The shaded gray area shows the projected bands
of the surrounding GAL regions. For comparison, the bulk graphene
band structure Eb is also shown. Note that � denotes the lattice
constant of the waveguide. Right: corresponding density of states
for the TB model. Note the Van Hove singularities characteristic of
one-dimensional structures.
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approximation. Only electron (E > 0) bands are shown. Both
the TB and the Dirac model exhibit perfect electron-hole
symmetry, so hole (E < 0) bands simply follow from a
sign change. For the Dirac results we take the effective
width of the waveguide to be Weff = (N + 1

2 )w, slightly
larger than the definition used for denoting the waveguide
geometries. Note that the wave vector is shown relative to the
lattice constant of the GAL waveguide, which is � = 3La

for the zigzag orientation and � = √
3La for the armchair

orientation. In the figure, the shaded gray region illustrates
the projected bands of the GAL, which define the region
below which localized waveguide states are expected to appear.
This particular waveguide structure supports several localized
states. Higher-lying band gaps also appear in the GAL, and
we have confirmed that localized waveguide modes are also
supported in these gaps. It is worth stressing that localized
waveguide modes exist for all wave vectors in the first Brillouin
zone. This is in contrast to the case of waveguides defined
via electrostatic gating, where guided modes generally exist
only for a limited range of wave vectors.29 The dispersions
of the waveguide states agree very well between the TB and
the Dirac model, as long as the wave vector is not too near
the Brillouin zone edges. The largest deviations between the
two models occur for energies close to the projected bands
of the GAL, where coupling between the waveguide and
the GAL states is pronounced. We note that the analytical
result obtained in the infinite mass limit E∞

ns is a very good
approximation of the lowest waveguide mode. Including the
first-order correction to E∞

ns leads to near-perfect agreement
with the full solution of the transcendental equation. Note
that, as illustrated in the derivation of the Dirac result, the
waveguide dispersion relation quite closely resembles that of
gapped graphene, which in turn is approximately the same
as bulk graphene for wave vectors k 	 �eff/(h̄vF ). This is
evident in the figure, where for comparison we also include
the bulk graphene dispersion relation. The density of states
(DOS) calculated using the TB model is shown in the right
panel of Fig. 2. As expected from the Dirac approximation,
the DOS closely resembles one-dimensional gapped graphene,
i.e., g(E) ∝ �(E − �eff)E/(h̄vF

√
E2 − �2

eff ) with the Van
Hove singularities characteristic of one-dimensionality clearly
evident in the figure.

B. Band gaps and effective masses

In Fig. 3(a), we show the energy of the lowest localized
waveguide state at the � point as a function of the width
of a {7,3}(zz,ac)

N waveguide. Results are shown for the TB
model as well as the analytical results obtained in the Dirac
equation approach. Note that, due to electron-hole symmetry,
the band gap is twice this value. While the solution derived
from the Dirac equation does not distinguish between zigzag
and armchair orientation of the waveguide, the TB model
predicts that there are some differences between the two cases.
To illustrate this, we show results obtained for waveguides
oriented along the zigzag (ZZ) and armchair (AC) directions,
respectively. The inset of the figure illustrates that both ZZ
and AC orientations exhibit a clear 1/W dependence of
the energies, as predicted from the Dirac approximation,
provided the waveguide is sufficiently wide. We note that

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0 0.05 0.1 0.15 0.2
0

0.05
0.1
0.15

(a)

E
n
er

g
y

(e
V

)

ZZ GNR

AC GNR

1/W (nm−1)

5 10 15 20 25 30
0.00

0.01

0.02

0.03

0.04
(b)

Waveguide width W (nm)

M
as

s
(m

e)

{7, 3} (zz)
W/w

{7, 3} (ac)
W/w

E
(1)
ns

E∞
ns

FIG. 3. (Color online) (a) Energy of the lowest localized waveg-
uide state at the � point, for the {7,3}N family of GAL waveguides.
The energy is shown as a function of the width of the waveguide.
Results are shown for TB models (points) of waveguides oriented
along the zigzag (ZZ) and armchair (AC) directions, respectively,
as well as the analytical results obtained via the Dirac model in
the infinite mass limit and including the first-order correction (black
lines). See the legend in panel (b). Inset: 1/W dependence of the
energy for wide waveguides. For comparison, the thin colored lines
show the energies for ZZ and AC GNRs, if certain edge dependencies
are ignored (see text). (b) Corresponding effective masses in units of
the free-electron mass me. In both panels, note the close resemblance
of the results obtained for AC and ZZ oriented waveguides.

while differences do exist between AC and ZZ orientations
these are rather small and could be attributed to a slightly
different effective width of the waveguides in the two cases,
due to the π/6 difference in the orientation of the surrounding
GAL with respect to the waveguide. Indeed, results of the
Dirac approximation fit both orientations quite well, especially
when including the first-order correction. The results of the
Dirac model can be made to fit even better if we take into
account the fact that the effective width of the waveguide is
likely to be somewhat larger than the definition we have used
(see Fig. 1). Indeed, introducing the same effective width in
the Dirac model as we did for Fig. 2 results in even better
agreement with TB results.

The absence of a well-defined edge means that the depen-
dence of the properties of the guided modes on the width of
the waveguide is much simpler than is the case for GNRs.
In particular, GAL waveguides are always semiconducting,
whereas in a nearest-neighbor TB model armchair GNRs
alternate between metallic and semiconducting behavior de-
pending on the exact width of the ribbon, while zigzag
GNRs display dispersionless midgap states, localized on the
edges.9 In Fig. 3(a), we show the energies for ZZ and AC
GNRs, calculated via the TB model. We stress that the ZZ
GNRs also contain dispersionless edge states at the Dirac
point energy. Furthermore, AC GNRs are metallic for widths
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W = (3p − 1)a, with p being an integer.8 To compare with
the waveguide results, we have included only semiconducting
AC GNRs in the figure. With these modifications, there is quite
good agreement between the energies of GNRs and the GAL
waveguide structures. GAL waveguides thus resemble ribbons
without the particulars resulting from edge effects. As such,
we speculate that the electronic properties of GAL waveguides
may be easier to control experimentally.

In Fig. 3(b), we show the effective mass of the lowest
waveguide state at the � point as a function of the width. From
the analytical Dirac results in the limit of an infinite mass
term, we find an effective mass m∞

eff = h̄π (n + 1
2 )/(vF W ).

Again, we note that there is excellent agreement between
the results obtained in the Dirac approximation and those
from a TB model, for both orientations of the waveguide.
Including the first-order correction, results from the Dirac
model are in near-perfect agreement with the TB model. While
electrons in pristine graphene have vanishing effective masses,
the appearance of an effective mass term in the waveguide
structures results in nonzero albeit still very small effective
electron masses, which tend to zero in the limit of infinitely
wide waveguides.

C. Eigenstates

To further compare the AC and ZZ waveguide orienta-
tions, we show in Fig. 4(a) the eigenstates corresponding to
the lowest (positive) energy of {7,3}(zz)

5 and {7,3}(ac)
3 GAL

waveguides, calculated at the � point. Note that these have
approximately the same waveguide widths. The lower panels in
the figure show the absolute square of the wave function, with
the color indicating the sublattice. These results demonstrate
a crucial difference between the AC and ZZ orientations,
namely, that while for the AC waveguide the wave function is
distributed evenly across the two sublattices the ZZ waveguide
exhibits pseudo-spin-polarization, with the wave functions
of the two sublattices localized predominantly on opposite
edges of the waveguide. We note that the lowest energy
is doubly degenerate and that the second eigenstate (not
shown) has the opposite pseudo-spin-distribution. The upper
panels in the figure show the integrated probability density,
ρ(x) ≡ ∫ |ψ(x,y)|2dy, along the transversal direction of the
waveguide, with color indicating the sublattice. Note that,
despite the lack of a clearly defined edge, the probability
densities very closely resembles those of GNRs.9 The black
lines in the upper panels show the total probability density,
if a broadening of the order of the graphene lattice constant
is included in order to account for the spatial extent of the
π orbitals. As predicted from the Dirac equation approach
above, these results illustrate how the charge density is nearly
uniformly distributed across the entire waveguide also for the
higher-lying states shown in Fig. 4(b). This is in stark contrast
to gate defined waveguides, which have wave functions
more reminiscent of ordinary standing wave solutions.29 In
agreement with the Dirac results, we find that the uniform
distribution only occurs at the � point. For nonzero wave
vectors the density becomes localized predominantly at the
edges of the waveguide for the lowest state, as illustrated with
dashed lines in the figure for k� = π/2. In contrast to this,

{7, 3} (zz)
5 {7, 3} (ac)

3

ρ
(x

)

ρ
(x

)

(a)

ρ
(x

)

ρ
(x

)

(b)

FIG. 4. (Color online) Wave functions of the localized waveguide
modes corresponding to the (a) lowest and the (b) second-lowest
(positive) energy at the � point of a (left) {7,3}(zz)

5 and a (right)
{7,3}(ac)

3 GAL waveguide. The lower panels in each case show the
geometry, with carbon atoms indicated with black dots. Note that the
actual computational cell includes additional GAL unit cells on each
side of the central region. Superimposed on top of the geometry
is the wave function, with the size of the circles indicating the
absolute square of the π -orbital coefficient, while the color indicates
the sublattice. The upper panels show the integrated probability
density, ρ(x) ≡ ∫ |ψ(x,y)|2dy. Red and blue circles indicate the
densities on each sublattice. The black line shows the total density,
when including a small broadening term. The dashed line shows the
corresponding density at nonzero wave vectors, k� = π/2. Note the
rapid oscillations of the integrated density of the AC waveguide.

the densities of the second-lowest states tend to localize in the
center of the waveguide as the wave vector is increased.

To compare the wave functions with the spinor components
derived via the Dirac equation, we first note that both the K

and the K ′ points of graphene are folded onto the � point
of the waveguide structure. We thus expect the eigenstates to
resemble linear combinations of the eigenstates in both valleys.
The differences between the zigzag and armchair waveguides
emerge due to the Bloch phase factors eiK·r and eiK′ ·r, which
differ depending on the orientation of the graphene lattice. For
the zigzag orientation, the integrated probability density ρ(x)
becomes a simple linear combination of the eigenstates belong-
ing to each valley, ρA(x) ∝ |fK (x) + fK ′ (x)|2 and ρB(x) ∝
|gK (x) + gK ′(x)|2. Using the expressions for the spinor
components derived above, we find ρ(x) ∝ 1 ± sin(2π [n +
1
2 ]x/W ), with the sign depending on the sublattice, which is
in excellent agreement with the TB results. In contrast to this,
because of the mixing of the valleys the probability densities of
the armchair orientation exhibit a rapidly oscillating term, with
a period 2π/�K .27 These rapid oscillations are clearly evident
in the right panels of Fig. 4. As shown in the figure, these
rapid oscillations are quickly washed out if a small amount
of broadening is included. In this case, we recover the nearly
uniform charge distribution within the waveguide predicted
from the Dirac results. Finally, we note that the differences
between armchair and zigzag oriented GAL waveguides are
very similar to those seen between GNRs with armchair and
zigzag edges.9 In the case of GNRs, though, the difference
emerges due to different boundary conditions at the edge of the
ribbon, which are not present in the case of GAL waveguides.
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FIG. 5. (Color online) Insets: schematic transport setups for (a) a
GAL waveguide and (b) a GNR, each connecting two semi-infinite
graphene leads. Conductances for pristine (solid lines) and disordered
systems (dashed lines) are shown for (a) GAL waveguides and
(b) GNRs, in units of the conductance quantum G0. The straight
black dashed lines show the graphene conductance. In the disordered
systems, edge atoms have been randomly removed with a 5%
probability. The lengths of the waveguides and GNRs are L = 89 nm.
The shaded area in panel (a) indicates the energy range of the confined
waveguide mode.

D. Conductance

Because the GAL waveguides have no clearly defined
edge, one might wonder whether the guiding properties
of the waveguides would be relatively robust to disorder.
Indeed, the crucial ingredient is the existence of a band gap
in the surrounding GAL. As this gap essentially occurs due
to an averaging of the effect of the individual holes,30 the
emergence of a gap should be relatively robust to disorder.
A thorough investigation of disorder is beyond the scope of
this paper, but as a preliminary study we model disorder by
randomly removing atoms at the edges of the holes in the
GAL. We consider a disordered GAL waveguide sandwiched
between semi-infinite pristine graphene leads as illustrated in
the inset of Fig. 5(a). For comparison we also consider the
analogous system with the two graphene leads connected with
a GNR having the same width as the corresponding waveguide
(W = 4.5 nm for ZZ, W = 6.0 nm for AC), as illustrated in
the inset of Fig. 5(b). We calculate the transmission through
the waveguide and GNR using a recursive Green’s-function
method31 with the lead self-energies determined using an
iterative procedure.32 The transmission is averaged over
100 values of the transverse wave vector, and we further
average over ten samples with different realizations of the
random disorder. To smear out the rapid oscillations that occur
due to interference between transmitted and reflected waves at

the boundaries between the GAL waveguide and the graphene
leads, we calculate the conductance at a finite temperature of
T = 100 K. We consider a relatively high level of disorder,
for which edge atoms are removed with a 5% probability. In
Fig. 5(a), we show the conductance of disordered {7,3}(zz,ac)

1
GAL waveguides of length L = 89 nm (dashed lines). For
comparison, we also include the conductance of the pristine
waveguides (solid lines). The shaded area indicates the energy
range for the confined waveguide mode. In Fig. 5(b), we show
the corresponding results for ZZ and AC GNRs.

Focusing first on the conductances for the pristine systems
(solid lines), we observe that the ZZ and AC oriented GAL
waveguides have a similar conductance in the energy range
of the waveguide mode. The high conductances G ∼ 1.5 G0

show that there is a relatively good electronic coupling
between the GAL waveguide and the graphene leads. The
metallic ZZ GNR is conducting at all energies, but the
conductance saturates at a value close to unity. In the energy
range of the waveguide mode, the GAL waveguides thus
have a higher conductance than both of the GNRs. Turning
to the results for the disordered systems we observe that
the GAL waveguides retain relatively high conductances.
The ZZ and AC orientations show comparable reductions in
the conductance due to disorder. The ZZ GNR is less affected
by disorder, while the AC GNR conductance is significantly
reduced except at the lowest energies. We conclude that
the GAL waveguides appear to be relatively robust against
structural disorder and in general have higher conductances
than the corresponding GNR systems.

E. Waveguide bends

As mentioned earlier, the waveguides introduced in this
paper are closely analogous to photonic crystal waveguides.
In such structures, light can be guided through bends in
the waveguide with very little radiation loss.19 Relying on
this analogy, we expect GAL waveguides to show a similar

FIG. 6. (Color online) Bond current through a “kinked” {5,2}(zz)
1

GAL waveguide. The current is calculated at energy E = 0.25 eV
with a transmission of T = 1.9. The current is highly confined to the
waveguide region and no additional reflections are observed due to
the kinks.
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FIG. 7. (Color online) Conductances of the “kinked” waveguide
shown in Fig. 6 (straight line) and of a straight waveguide of similar
length (dashed line). The shaded area indicates the energy range of
the confined waveguide mode of the straight waveguide. Note the
nearly identical conductances of the two systems.

robustness to kinks along the waveguide. To illustrate the
localization of the electronic state and the guiding properties
of the GAL waveguide we show the local current through
the waveguide in Fig. 6. Similar to the results of Fig. 5, the
waveguide structure is connected on both sides to semi-infinite
bulk graphene leads, not included in the figure. The left
going bond current (per unit energy) in the presence of an
infinitesimal bias voltage is calculated from the left scattering
state spectral function AL,ij and the hopping matrix elements
Hij from the TB Hamiltonian. Between atom i and j the
local current is AL,ij Hij .33 To visualize the current on the
given scale the current running away from each atom was
calculated and averaged over an applied mesh. The illustrated
average current thus cannot be assigned to the individual
atoms anymore, which is the reason why current appears to
occur within the holes in the figure. Since the k-averaged
transmission only changes slightly from the �-point result, we
use the �-point scattering states. Figure 6 clearly illustrates
the confinement of the current to the waveguide region and the
robustness against kinks.

To further illustrate the strong guiding properties of GAL
waveguides, we show in Fig. 7 the conductance of the
waveguide bend illustrated in Fig. 6. A similar method was
used as that for the results of Fig. 5. For comparison, we
also show the corresponding conductance through a waveguide
generated by omitting the kink in Fig. 6 and instead having
the waveguide run straight through. These results show that,
while there are small differences between the two structures in
the oscillations of the conductance, overall the introduction of

a kink has almost no consequence on the conductance through
the GAL waveguide. Very low reflection loss is thus introduced
by the kink, despite the fact that the waveguide alternates
between zigzag and armchair orientations. We note that we
have found similar results for slightly different waveguide
structures.

V. DISCUSSION AND SUMMARY

The GAL waveguide systems studied in this paper represent
idealized structures, which may be challenging to realize
experimentally due to the small hole sizes. However, the
applicability of the Dirac model allows for simulations of
arbitrarily large structures. Moreover, the Dirac model can
equally well be applied to other gapped graphene systems,
where the band gap is not induced through periodic holes,
but, e.g., via periodically absorbed hydrogen.20 Although the
Dirac and TB models applied in this work are very simple,
previous studies of pure GALs have shown that both the
Dirac and TB models reproduce the trends obtained from
more accurate density-functional theory calculations.34 In any
case, the concept of a GAL waveguide depends only on the
existence of a band gap in the GAL region and not on the
specific details, and we believe our simplified models capture
the correct physics.

In summary, we have introduced GAL waveguides. The
band structures of GAL waveguides have been modeled with
the Dirac model including a mass term, which is shown to be in
excellent agreement with an atomistic tight-binding model. We
have shown that GAL waveguides support modes which are
highly confined to the waveguide region and are robust against
structural disorder and kinks in the waveguide. In transport
calculations, we find that GAL waveguides have higher
conductances than corresponding graphene nanoribbons. A
further advantage of the surrounding GAL may be that it
will mechanically stabilize the structure and be able to carry
some of the generated Joule heat away from the device.
GAL waveguides may thus be an attractable way of realizing
electronic wires in integrated graphene circuits.
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