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Spatially resolved quantum plasmon modes in metallic nano-films from first-principles

Kirsten Andersen,1 Karsten W. Jacobsen,1 and Kristian S. Thygesen1,2,*

1Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

2Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(Received 14 August 2012; published 26 December 2012)

Electron energy loss spectroscopy (EELS) can be used to probe plasmon excitations in nanostructured materials
with atomic-scale spatial resolution. For structures smaller than a few nanometers, quantum effects are expected
to be important, limiting the validity of widely used semiclassical response models. Here we present a method
to identify and compute spatially resolved plasmon modes from first-principles based on a spectral analysis of
the dynamical dielectric function. As an example we calculate the plasmon modes of 0.5 to 4 nm thick Na films
and find that they can be classified as (conventional) surface modes, subsurface modes, and a discrete set of
bulk modes resembling standing waves across the film. We find clear effects of both quantum confinement and
nonlocal response. The quantum plasmon modes provide an intuitive picture of collective excitations of confined
electron systems and offer a clear interpretation of spatially resolved EELS spectra.
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I. INTRODUCTION

The dielectric properties of a material are to a large extent
governed by the collective eigenmodes of its electron system
known as plasmons.1 Advances in spectroscopy and materials
preparation have recently made it possible to study and control
light-matter interactions at the nanometer length scale where
particularly the surface plasmons play a key role.2,3 While the
ultimate goal of nanoplasmonics as a platform for ultrafast
and compact information processing remains a challenge
for the future, the unique plasmonic properties of metallic
nanostructures have already been utilized in a number of
applications including molecular sensors,4,5 photocatalysis,6

and thin-film solar cells.7

Electron energy loss spectroscopy (EELS) has been widely
used to probe plasmon excitations in bulk materials and
their surfaces. More recently, the use of highly confined
electron beams available in transmission electron microscopes
has made it possible to measure the loss spectrum of low-
dimensional structures on a subnanometer length scale and
with <0.1 eV energy resolution.8 Because the loss spectrum
is dominated by the plasmons this technique provides a means
for visualizing the real-space structure plasmon excitations.9

All information about the plasmons of a given material
is contained in its frequency-dependent dielectric function ε,
which relates the total potential in the material to the externally
applied potential to linear order,

φext(r,ω) =
∫

ε(r,r ′,ω)φtot(r
′,ω)dr ′. (1)

(We have specialized to the case of longitudinal fields which
can be represented by scalar potentials.) In the widely used
Drude model, one neglects the spatial variation of ε and
describes the frequency dependence by a single parameter,
the bulk plasmon frequency ωp =

√
ne2/mε0, where n is the

average electron density of the material.2 For metal surfaces
the Drude model predicts the existence of surface plasmons
with frequency ωs = ωp/

√
2. While the Drude model provides

a reasonable description of plasmons in simple metal structures
in the mesoscopic size regime, it fails to account for the
dispersion (wave vector dependence) of the plasmon energy in

extended systems and predicts a divergent field enhancement
at sharp edges. These unphysical results are to some extent
remedied by the semiclassical hydrodynamic models which
can account for spatial nonlocality of ε and smooth charge
density profiles at the metal-vacuum interface.2,10,11 Still, for
materials other than the simple metals and for truly nanometer
sized structures, predictive modeling of plasmonic properties
must be based on a full quantum mechanical description.12,13

The calculation of plasmon energies and EELS spectra of
periodic solids from first-principles is a well established
discipline of computational condensed matter physics.14–17

Here we apply these powerful methods to systematically map
out the real space structure of plasmon excitations at the
nanometer length scale.

In this paper we present a general method to calculate
spatially resolved plasmon modes from first-principles. We
apply the method to Na films of a few nanometer thickness
where effects of quantum confinement and nonlocal response
are expected to be important. The plasmon modes we find
can be categorized as surface modes located mainly outside
the metal surface, subsurface modes located just below the
surface, and bulk modes. Very intuitively, the bulk plasmon
modes resemble standing waves with nodes at the film surfaces.
However, only plasmons with oscillation periods larger than
10 Å are found as a result of Landau damping which suppresses
the strength of plasmon modes with smaller oscillation periods.
Finally, we calculate the spatially resolved EELS spectrum of
the metal films and show that all its features can be traced to
excitation of specific plasmon modes.

II. METHOD

According to Eq. (1), a self-sustained charge density
oscillation ρ(r,ω) can exist in a material if the related potential,
satisfying the Poisson equation ∇2φ = −4πρ (atomic units are
used throughout), obeys the equation

∫
ε(r,r ′,ω)φ(r ′,ω)dr ′ = 0. (2)
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In general, this equation cannot be exactly satisfied because the
dielectric function will have a finite imaginary part originating
from single-particle transitions which will lead to damping of
the charge oscillation.18 We therefore require only that the real
part of ε vanishes and use the following defining equation for
the potential associated with a plasmon mode,∫

ε(r,r ′,ωn)φn(r ′,ωn)dr ′ = i�nφn(r,ωn), (3)

where �n is a real number. Mathematically, the plasmon modes
are thus the eigenfunctions corresponding to purely imaginary
eigenvalues of the dielectric function. Physically, they repre-
sent the potential associated with self-sustained charge-density
oscillations damped by electron-hole pair formations at the
rate �n.

It is instructive to consider the dielectric function in its
spectral representation

ε(r,r ′,ω) =
∑

n

εn(ω)φn(r,ω)ρn(r ′,ω), (4)

where the left and right eigenfunctions satisfy the usual
orthonormality relation

〈φn(ω)|ρm(ω)〉 = δnm. (5)

In the Appendix we show that the left and right eigenfunctions
are related through Poisson’s equation

∇2φn(r,ω) = −4πρn(r,ω), (6)

and thus correspond to the potential and charge density of the
dielectric eigenmode, respectively. Physically, the condition
(5) expresses the fact that the different dielectric eigenmodes
for a given frequency ω are electrodynamically decoupled. The
inverse dielectric function ε−1(r,r ′,ω) is obtained by replacing
the eigenvalues εn(ω) in Eq. (4) by 1/εn(ω).

When the imaginary part of the eigenvalue εn(ω) does not
vary too much around the plasmon frequency ωn, the condition
(3) is equivalent to the condition that

Imεn(ωn)−1 is a local maximum. (7)

This is the case for most of the plasmon modes of the
simple metal films studied in this work. However, for the high
energy bulk modes we found that the variation in Imεn(ω)
can shift the local maximum of Imεn(ω)−1 away from the
point where Reεn(ω) = 0. (The effect can be even stronger for
more complex materials with interband transitions.19) In such
cases the condition (7) rather than (3) should be used to define
the plasmon energy. Importantly, however, the eigenfunctions
φn(r,ω) do not change significantly when ω is varied between
the frequencies given by the two criteria, and thus the spatial
form of the plasmon remains well defined.

In the case of metallic films where the in-plane variation of
ε and φn can be assumed to have the forms exp(iq‖ · (r‖ − r ′

‖))
and exp(iq‖ · r‖), respectively, Eq. (3) can be written∫

ε(q‖,z,z′,ωn)φn(z′,ωn)dz′ = i�nφn(z,ωn). (8)

We stress that despite the atomic variation in the potential we
have found that local field effects are negligible within the
plane justifying this assumption.

All the calculations were performed with the elec-
tronic structure code GPAW20,21 using the Atomic Simulation
Environment.22 The Na films were modeled in a supercell
with periodic boundary conditions imposed in all directions.
The minimal Na unit cell was used in the plane of the film, and
30 Å of vacuum was included in the direction perpendicular
to the film to separate the periodic images. The single-particle
wave functions and energies were computed on a real-space
grid with a grid spacing 0.18 Å, and the Brillouin zone was
sampled by 64 × 64 k points. The local density approximation
(LDA) functional was used for exchange and correlation. The
noninteracting density response function χ0 was calculated
from the single-particle states of a density functional theory
(DFT) calculation using a 50 eV energy cutoff for the plane
wave basis and including states up to 15 eV above the Fermi
level. The frequency dependence of the dielectric function
was sampled on the real frequency axis using a grid from
0 to 20 eV with a 0.1 eV spacing. We checked that our
results were converged with respect to all the parameters
of the calculation. The microscopic dielectric function was
calculated from χ0 using the random phase approximation
(RPA). We note in passing that this DFT-RPA level of theory
yields highly accurate bulk and surface plasmon energies
(within a few tenths of an electron volt) of the simple metals.17

To obtain the plasmon modes, the dielectric function is
diagonalized in a plane-wave basis on each point of a uniform
frequency grid. To simulate an isolated film, the obtained
eigenmode potentials were corrected to remove the effect of
interactions with films in the other supercells, i.e., the periodic
boundary conditions from the DFT calculation (this is most
important for small q‖ vectors). In general the eigenmodes
were found to be complex valued, reflecting the spatial
variation in the phase of the plasmon potential. This phase
variation is, however, rather weak for the present system, and
by a suitable choice of the overall phase the modes can be
made almost real (>90%). For this reason only the real part of
the plasmon modes are shown in this work.

III. RESULTS

In the left panel of Fig. 1 we show the plasmon modes φn(z)
(red) and corresponding charge densities ρn(z) (blue) obtained
for a 10 atom thick Na film terminated by (100) surfaces.
Figure 2 shows the real part of the eigenvalues of ε for the
ten layer film. The red dots indicate the plasmon frequencies
ωn, where the real part of an eigenvalue crosses the real axis
from below. Note that the point where an eigenvalue crosses
the real axis from above corresponds roughly to the energy
of the individual single-particle transitions contributing to the
plasmon state. Thus the distance between the two crossing
points, α̃, represents the Coulombic restoring force of the
plasma oscillation. The eigenfunctions of ε corresponding to
the indicated eigenvalues are the plasmon modes shown in
Fig. 1. The energies and strengths αn of the plasmon modes
are listed to the left. The strength is determined by fitting a
single-pole model

εn,1p(ω) = 1 − αn

ω − ωn,0 + iγn

(9)

to the value and slope of the relevant eigenvalue branch of ε

at the point ω = ωn; see Fig. 2.
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FIG. 1. (Color online) (Left) Spatial profile of the plasmon modes in the direction normal to the film for in-plane momentum transfer
q‖ = 0.1 Å−1. The red (blue) curves show the potential (density) associated with the plasmon excitation. Mode type, energy, and strength α are
shown to the left. (Middle) Contour plot of the energy loss of an in-plane electron beam as it is scanned across the film. Only the left half of the
film is shown, and the positions of the Na atoms are indicated by white circles at the bottom. The three bright features in the spectrum originate
from energy loss due to excitation of three types of plasmons, namely, the surface plasmon mode S1, the subsurface mode S2, and the lowest
bulk plasmon modes B1, respectively. (Right) Calculated electron energy loss spectra along the dashed lines indicated in the middle panel.

Returning to Fig. 1, we see that the lowest lying plasmon
modes S1 are the symmetric and antisymmetric surface
plasmons also predicted by the classical Drude model. The
two sets of modes denoted S2 and S3 are also localized at

FIG. 2. (Color online) Real part of the eigenvalues of the
microscopic dielectric function ε(ω) for a ten layer Na film. The
frequencies where an eigenvalue crosses the real axis from below
(red dots) define the plasmon frequencies, and the corresponding
eigenfunctions represent the plasmon modes shown by the red curves
in the left panel of Fig. 1. The blue curve shows the real part of the
single-pole model used to extract the strength of the plasmon. The
distance between the zero points, α̃ = √

α2 − 4γ 2, increases with
increasing strength of the mode.

the surface, although they penetrate more into the bulk, and
we therefore refer to them as subsurface modes. For a very
thin slab of three layers, see Fig. 3, only the first subsurface
mode, S2, is supported. The subsurface character of the S3

mode is perhaps more evident for the twenty layer film
where it is more clearly separated from the bulk modes; see
Fig. 4. Experimental loss spectra of simple metal surfaces
have shown a small peak between the surface and bulk
peaks which was assigned to a subsurface plasmon (in that
work denoted multipole surface mode).23 Such a peak at
intermediate energies was also observed in a previous RPA
calculation for a jellium surface.24 However, the complete
analysis of the plasmons modes presented here shows that
more than one subsurface mode exists.

The bulk plasmons B occur at higher energies and resemble
standing waves across the film. The fact that only a discrete

FIG. 3. (Color online) Spatial profile of the plasmon modes of a
three layer Na film in the direction normal to the film for momentum
transfer q‖ = 0.1 Å−1. The red (blue) curves show the potential
(density) associated with the plasmon excitation, and the mode type,
energy, and strength α are shown to the left.
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FIG. 4. (Color online) Spatial profile of the plasmon modes of
a twenty layer Na film in the direction normal to the film for
momentum transfer q‖ = 0.1 Å−1. The red (blue) curves show the
potential (density) associated with the plasmon excitation, and the
mode type, energy, and strength α are shown to the left. In addition
to the conventional surface modes S1, the twenty layer slab supports
two sets of subsurface plasmon modes (S2,S3) with energies between
the surface and bulk modes.

set of bulk modes are observed is clearly a result of the
confinement of the electron gas which requires the density
to vanish at the boundaries of the film. The reason only a
finite number of modes are found is that the damping of the
modes due to single-particle transitions increases for smaller
oscillation periods, i.e., larger wave number. Consequently,
the strength of the bulk plasmons decreases with increasing
wave number until the point where the real part of ε does not
cross the real axis. This is evident in Fig. 2 where a series
of local minima in the eigenvalue spectrum can be seen at

higher frequencies. For all the films, the highest lying bulk
mode has a wave number around 0.5 Å−1. This is very close
to the threshold q where Reε(q,ω) becomes positive for all ω

in bulk Na.
As already mentioned, the main mechanism of energy

loss of fast electrons propagating through a material is via
excitation of plasmons. In general, the energy dissipated to
the electron system due to an applied potential of the form
φext(r,t) = φext(r) exp(iωt) is

P (ω) =
∫ ∫

φext(r)χ2(r,r ′,ω)φext(r
′)drdr ′. (10)

Here χ2 is the imaginary part of the density response function
χ . In the case of a fast electron, the external potential is simply
that of a point charge moving at constant velocity. We have
calculated the loss function for high energy electron beams
directed along lines parallel to the film. The resulting EELS
spectrum is seen in the middle panel of Fig. 1. It is clear
that the loss spectrum is completely dominated by three types
of excitations corresponding to the surface, subsurface, and
bulk plasmon modes shown to the left. The intensity of the
subsurface modes is rather weak in agreement with the low
strength α of these modes.

Figure 5 shows all the energies of the symmetric and
antisymmetric surface plasmons (subsurface plasmons not
included) found for four different film thicknesses as a function
of the in-plane wave vector q‖ (Ref. 25). The full curves are the
classical Drude results for a two-dimensional (2D) metal film
with the electron density of Na. For small q‖ the agreement
with the classical result is striking for the symmetric mode.
On the other hand, the quantum results for the antisymmetric
mode are significantly red shifted compared to the Drude result
with deviations up to 1 eV for the thinnest film. For large
q‖ the quantum plasmons show a q2

‖ dispersion whereas the

classical result approaches the asymptotic value ωp/
√

2. This

FIG. 5. (Color online) Dispersion of surface plasmon energies
for different Na film thicknesses. The symbols represent the first-
principles RPA results for the energy of the symmetric (lower branch)
and antisymmetric (upper branch) surface plasmons as a function of
the in-plane wave number q‖. The full lines are the result of a classical
Drude model.
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FIG. 6. (Color online) Like Fig. 5 but plotted as function of the
dimensionless parameter dq‖ where d is the thickness of the Na film.

failure of the classical model is due to the neglect of the spatial
nonlocality of ε, i.e., the (r − r ′) dependence.

We note that when exchange-correlation effects are in-
cluded through the adiabatic local density approximation
(ALDA) kernel, a larger deviation from the classical model is
observed. In particular the antisymmetric mode is shifted even
further down for small q‖. A similar behavior, i.e., a downshift
of plasmon energies, is observed for simple metal bulk systems
where the ALDA also predicts a negative dispersion for small
q (Ref. 2). The spatial form of the plasmon modes obtained
with the ALDA is, however, identical to those obtained at the
RPA level.

In Fig. 6 we show the same data as shown in Fig. 5 but
with the plasmon energy plotted relative to the dimensionless
parameter dq‖, where d is the film thickness. When plotted in
this way, all the classical dispersions fall on the same universal
curve. In the regime dq‖ < 2, it is clear that the quantum results
for the antisymmetric mode are not converged to the classical
result even for the thickest slab.

FIG. 7. (Color online) Dispersion of all the plasmon modes found
for the twenty atomic layer Na film.

In Fig. 7 we present the dispersion of all plasmon modes
(conventional surface, subsurface, and bulk modes) for the
twenty layer film. The bulk modes show a weak q2

‖ dispersion.
The energy offset between the different bulk modes arises
from the different wavelengths of the plasmons in the normal
direction. The energy of the lowest bulk mode B1 in the q‖ = 0
limit is <0.1 eV higher than the bulk value of h̄ωp. This small
deviation is due to the finite wavelength of the plasmon on
the direction perpendicular to the film, and this indicates that
quantum size effects have a very small influence on the bulk
modes of the twenty layer film.

The first subsurface mode (green color) follows a q2
‖

dispersion until around 0.2 Å−1 where it enters the bulk mode
energy range. From this point the dispersion of the subsurface
mode is reduced and follows that of the bulk modes. The
dispersion of the second subsurface mode (yellow color) is
very similar to the bulk dispersion. The second subsurface
mode is rather weak and for q‖ > 0.2 Å−1 its eigenvalue
εn(ω) does not cross the real axis at any frequency. For
both subsurface modes the splitting between the symmetric
and antisymmetric modes is rather small. We ascribe this to
the weaker strength of the electric field associated with the
subsurface mode compared to the conventional surface mode:
While the charge distribution ρn associated with the latter has
monopole character in the direction perpendicular to the film,
the subsurface modes have dipole character; see Fig. 4.

IV. CONCLUSION

We have demonstrated a method for calculating spatially
resolved plasmon modes in nanostructured materials from
first-principles. For the case of 2D Na films19 of thicknesses 0.5
to 4 nm, we found that the modes could be classified as either
surface modes, subsurface modes, or bulk modes. In contrast to
other studies, the direct computation of eigenmodes revealed
that several subsurface modes can exist at the surface of simple
metals. We found clear effects of quantum confinement on
the surface plasmon energies. In particular, the antisymmetric
surface mode of the thinner films was significantly red shifted
compared to the classical Drude result. Finally, it was demon-
strated how the different features in the calculated spatially
resolved EELS spectrum of the metal films could be unam-
biguously ascribed to the excitation of specific plasmon modes.
Apart from providing an intuitive and visual picture of the
collective excitations of a nanostructure, the spatially resolved
plasmon modes should be useful as a basis for the construction
of simple models for the full nonlocal dielectric function.
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APPENDIX: SPECTRAL REPRESENTATION OF ε

Let |φn(ω)〉 denote the eigenfunctions of the dielectric
function,

ε̂(ω)|φn(ω)〉 = εn(ω)|φn(ω)〉. (A1)

(We have suppressed the r dependence for notational simplic-
ity.) Since ε̂(ω) is a non-Hermitian operator, the eigenvalues
are complex and the eigenfunctions are nonorthogonal. In this
case the spectral representation takes the form

ε̂(ω) =
∑

n

εn(ω)|φn(ω)〉〈ρn(ω)|. (A2)

The set |ρn(ω)〉 is the dual basis of |φn(ω)〉 and satisfies

〈φn(ω)|ρn(ω)〉 = δnm. (A3)

From the spectral representation it follows directly that

ε̂(ω)†|ρn(ω)〉 = εn(ω)∗|ρn(ω)〉. (A4)

In the following we show that the dielectric eigenfunction
|φn(ω)〉 and its dual function |ρn(ω)〉 constitute a potential-

density pair, i.e.,

∇2φn(r,ω) = −4πρn(r,ω). (A5)

Within the RPA, the dielectric function is related to the
noninteracting polarization function χ0(r,r ′,ω) by

ε̂(ω) = 1̂ − v̂χ̂0(ω), (A6)

where v̂ = 1/|r − r ′| is the Coulomb interaction, 1̂ = δ(r − r ′).
Exploiting that, under time reversal symmetry χ0(r,r ′) =
χ0(r ′,r), we have

ε̂(ω)† = 1̂ − χ̂0(ω)∗v̂. (A7)

We now make the ansatz ρn(ω) = v̂−1φn(ω)∗ and evaluate

ε(ω)†v̂−1φn(ω)∗ = v−1φn(ω)∗ − χ̂0(ω)∗φn(ω)∗ (A8)

= v̂−1[ε̂(ω)φn(ω)]∗ (A9)

= εn(ω)∗v̂−1φ∗
n, (A10)

which concludes the proof.
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