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Optical Hall conductivity in bulk and nanostructured graphene beyond the Dirac approximation
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We present a perturbative method for calculating the optical Hall conductivity in a tight-binding framework
based on the Kubo formalism. The method involves diagonalization only of the Hamiltonian in absence of the
magnetic field, and thus avoids the computational problems usually arising due to the huge magnetic unit cells
required to maintain translational invariance in the presence of a Peierls phase. A recipe for applying the method
to numerical calculations of the magneto-optical response is presented. We apply the formalism to the case
of ordinary and gapped graphene in a next-nearest-neighbor tight-binding model as well as graphene antidot
lattices. In both cases, we find unique signatures in the Hall response that are not captured in continuum (Dirac)
approximations. These include a nonzero optical Hall conductivity even when the chemical potential is at the
Dirac point energy. Numerical results suggest that this effect should be measurable in experiments.

DOI: 10.1103/PhysRevB.86.235438 PACS number(s): 81.05.ue, 78.20.Bh, 78.20.Ls

I. INTRODUCTION

Since the experimental discovery of graphene,1 the hon-
eycomb lattice has been the subject of intense research.2–4

Graphene displays unique properties in an external magnetic
field, with a nonequidistant Landau level structure and a zeroth
Landau level energy which is independent of the magnetic
field strength.5–7 The Landau level structure is reflected in the
half-integer quantum Hall effect observed in graphene,8 which,
due to graphene’s large cyclotron gap, has been observed at
room temperature.9 These and other remarkable features of
graphene emerge quite naturally from a low-energy, continuum
description of graphene, the so-called Dirac approximation,
which is based on a linearization of a nearest-neighbor
(NN) tight-binding (TB) model near the high-symmetry K

points.10

While many properties of graphene are correctly described
by the Dirac model, it nevertheless fails in certain respects.
A simple example is found in the optical response displaying
a clear saddle point resonance around 4.4 eV that is absent
in a linearized model.11,12 More subtle effects such as an
orbital magnetic susceptibility away from the Dirac point
have been identified as consequences of lattice effects lost
in a continuum approach.13 Here, we demonstrate that under
certain circumstances the Hall conductivity, which is rou-
tinely applied as an important tool to characterize graphene
experimentally,8,14,15 cannot be accurately described by the
Dirac model. Specifically, the perfect electron-hole symmetry
of the Dirac model, present also in the nonlinearized NN
TB model, results in an optical Hall conductivity which
is identically zero unless electron-hole symmetry is broken
by moving the chemical potential away from the Dirac
point energy.16,17 In the present work, we predict that going
beyond the Dirac model by including next-nearest-neighbor
coupling in a full TB model yields an appreciable optical Hall
response even when the chemical potential coincides with the
Dirac point. This result is demonstrated using a perturbative
technique that allows us to evaluate the magneto-optical
response in an atomistic model for arbitrarily small field
strengths. Thus, we identify a significant lattice effect, for

which the Dirac model predicts a null result. We note that,
interestingly, this deviation occurs for energies well within
the range of the linearized band structure of graphene. It is
thus not a result of simply probing the band structure beyond
the validity of the linearized model, as is the saddle point
resonance mentioned above, but is rather a strong signature of
broken electron-hole symmetry.

To go beyond the Dirac model, we return to the tight-
binding model from which the Dirac approximation emerges.
The effect of a magnetic field can then be included via a
Peierls substitution. The trouble with this method is that
the periodicity of the Peierls phase, for realistic magnetic
field strengths, is usually orders of magnitude larger than the
lattice constant. Thus, calculations must be made on magnetic
unit cells hundreds or thousands of times larger than the
Wigner-Seitz cell. In the case of bulk materials, where the
unit cell consists of just a few atoms, this problem may
be overcome for large but reasonably realistic magnitudes
of the magnetic field. However, for nanostructured graphene
materials, where the Wigner-Seitz cell may itself contain
hundreds of atoms, direct diagonalization of the resulting
Hamiltonian is not feasible. Several numerical methods have
previously been suggested to overcome this problem.18–20

However, all these methods eventually fail at sufficiently small
magnetic fields, because of the divergence of the size of the
magnetic unit cell.

In this paper, we present a perturbative approach to calculat-
ing the optical Hall conductivity in TB models on a honeycomb
lattice. The approach requires diagonalization only of the
Hamiltonian in the absence of the magnetic field, and thus
circumvents the problem associated with the periodicity of the
Peierls phase. We apply the formalism first to ordinary and
gapped graphene, illustrating clear and qualitative deviations
from a Dirac approximation, as discussed above. Finally, to
illustrate the power of the perturbative formalism, we apply the
method to an example of nanostructured graphene, in this case
graphene antidot lattices,21,22 and once again find qualitative
differences in the optical Hall conductivity compared to a
simple continuum treatment.
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II. PERTURBATIVE METHOD

The derivation of the main result of the perturbative
treatment is given in full details in Ref. 23. The approach is
based on the strategy developed in Refs. 24 and 25. The starting
point is a TB approximation of the honeycomb lattice without
magnetic field. The optical conductivity is then evaluated
using the Kubo formalism, with the effect of the magnetic
field included perturbatively via a Peierls substitution. That
is, a phase is added to the hopping terms tij between atomic
sites i and j , such that tij → tij e

iφ , with the phase given as

φ = e/h̄ × ∫ Rj

Ri
A · dl. Here, Ri and Rj denote the positions

of the atomic sites, while A is the magnetic vector potential.
Including the effect of the magnetic field to first order, the
result for the optical Hall conductivity reads as

σxy(ω) = Be3

16π3h̄3ω

∫
dkRe

∮
C
dz

×{if (z)Tr[Txy(z) + Txy(z + h̄ω)]}. (1)

Also, we note that all even powers of the expansion in the
magnetic field strength are zero, so the equation is valid
up to third order in the magnetic field strength. Here, B is
the magnetic field strength, e is the electron charge, h̄ω is
the photon energy, and f (z) is the Fermi-Dirac distribution
function. The first integral is over the Brillouin zone, while
the last integral is to be taken along a contour C, which
should enclose the entire energy spectrum of the Hamiltonian
H , while C ± h̄ω should not contain the spectrum. Here,
and in what follows, we include a small imaginary part in
h̄ω = h̄ω0 + ih̄� to account for broadening. Note that a spin
degeneracy factor has not been included, and the final trace
thus includes tracing over spin degrees of freedom. This trace
is over the operators Txy(z) ≡ T (1)

xy (z) + T (2)
xy (z), with

T (1)
xy (z) ≡ {G̃yHyGx − G̃xHyGy + G̃[HyG(HyGx − HxGy)

+ (HyG̃x − HxG̃y)HyG]}Hx (2)

and

T (2)
xy (z) ≡ [(G̃yHxy − G̃xHyy)G + G̃(HyyGx − HxyGy)]Hx.

(3)

Here, we have defined the derivatives of the Hamiltonian
Hi ≡ ∂H/∂ki and Hij ≡ ∂2H/∂ki∂kj , with similar definitions
for the Green’s functions G = (H − z)−1 and G̃ = (H − z +
h̄ω)−1. We stress that because the magnetic field is treated as a
perturbation, the Hamiltonian appearing in these expressions
is the Hamiltonian in absence of the magnetic field. For
numerical calculations, this is a significant advantage of this
method, as we will demonstrate in more detail below.

III. LINEARIZED GRAPHENE

Before turning to the full TB model, we wish to apply
the above approach to demonstrate that, indeed, the Hall
conductivity in the linearized model vanishes if electron-hole
symmetry remains unbroken. We consider the TB Hamiltonian
corresponding to the unit cell of graphene shown in Fig. 1(a).
For generality, in addition to ordinary bulk graphene, we
consider also a gapped graphene model, where a staggered
mass term ±� is added to the on-site energies, with the sign

(a)

a1

a2

(b)

a1

a2

FIG. 1. (Color online) Unit cells used for the analytical and
numerical calculations of the optical Hall conductivity of (a) bulk
graphene and (b) a {4,2} graphene antidot lattice. The gray shading
indicates the size of the unit cell, with highlighted carbon atoms
included in the unit cell. Note that the rectangular unit cell for the
GAL is chosen for computational convenience only.

alternating between the two sublattices of graphene. Pristine
graphene may exhibit a gap due to excitonic effects.26,27

However, here we will focus on magnitudes of the gap that
are relevant for nanoengineered graphene, such as graphene
antidot lattices.21,22 We stress that the results obtained remain
qualitatively the same for any magnitude of the gap. Linearized
around the K point, we find that the optical Hall conductivity
can be evaluated as

σxy(ω)

σ0
= 4ω2

c

πω2

∫ ∞

�

dε
h̄2ω2 + 2�2 − 2ε2

h̄2ω2 − 4ε2
[f ′(−ε) − f ′(ε)],

(4)

where we have introduced the zero-frequency graphene
conductivity σ0 ≡ e2/4h̄ and the cyclotron frequency ωc ≡
vF

√
2eB/h̄, with vF the Fermi velocity. We note that the

K and K ′ valleys contribute equally, and that a factor of
2 to account for this valley degeneracy has already been
included in the above equation. This result agrees with the
low field strength limit of previous analytical results derived
by Gusynin et al.28 The full details of the derivation of
Eq. (4) are given in the Appendix. We note that the final term
f ′(−ε) − f ′(ε) ∝ sinh(μ/kT ) with μ the chemical potential
while kT is the thermal energy. This demonstrates how the
optical Hall conductivity is identically zero in the symmetrical
case, where the chemical potential sits at the Dirac point
energy. Below, we will demonstrate how this zero result is
drastically altered when going beyond the continuum (Dirac)
treatment of graphene.

IV. NUMERICAL RESULTS

The analytical result for linearized graphene, presented
above, is interesting in its own right, and serves as a way of
validating the perturbative approach. However, the real power
of the method lies in the fact that because the expression
in Eq. (1) is given in terms of the Hamiltonian without
magnetic field, numerical TB calculations can be performed on
a drastically smaller unit cell than using the standard method
of Peierls substitution in a nonperturbative manner. Peierls
substitution necessitates a magnetic unit cell large enough to
ensure periodicity of the magnetic phase factor added to the
hopping terms. For graphene, this leads to a scaling of the
total number of carbon atoms as N � 316 × 103 T × B−1,
rendering realistic magnetic fields quite difficult to manage
using this method.17
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A. Numerical recipe

To arrive at an expression suitable for numerical simulations, we first note the identity Gi = −GHiG, with Hi ≡ ∂H/∂ki ,
and a similar definition for the Green’s functions G = (H − z)−1 and G̃ = (H − z + h̄ω)−1. Using this identity we write the
trace in the eigenstate basis as

Tr
[
T (1)

xy (z)
] =

∑
mnpq

{
M

xxyy
mnpq − M

yxxy
mnpq

(Em − z−)(En − z−)(Ep − z)(Eq − z)
+ M

xyxy
mnpq − M

xxyy
mnpq

(Em − z−)(En − z)(Ep − z)(Eq − z)

+ M
yxxy
mnpq − M

xyxy
mnpq

(Em − z−)(En − z−)(Ep − z−)(Eq − z)

}
, (5)

where we have introduced z± = z ± h̄ω and

Mijkl
mnpq = 〈m|Hi |n〉〈n|Hj |p〉〈p|Hk|q〉〈q|Hl |m〉. (6)

We can now perform the contour integration using the residue theorem. To ease notation we define Emn = Em − En and
M

ijkl,i ′j ′k′l′
mnpq = M

ijkl
mnpq − M

i ′j ′k′l′
mnpq , as well as δ̄mn = 1 − δmn and δ̄mnp = δ̄mnδ̄npδ̄pm, where δmn is the Kronecker delta. We then

arrive at the rather lengthy expression∮
C
f (z)Tr

[
T (1)

xy (z)
]
dz = 2πi

∑
mnpq

{
δ̄pq

M
xxyy,yxxy
mnpq

Epq

(
f (Ep)

(Emp + �)(Enp + �)
− f (Eq)

(Emq + �)(Enq + �)

)

+ δpqM
xxyy,yxxy
mnpp

(Emp + Enp + 2�)f (Ep) + (Emp + �)(Enp + �)f ′(Ep)

(Emp + �)2(Enp + �)2

+ δ̄npq

(
Mxyxy,xxyy

mnpq + Mxyxy,xxyy
mpnq + Mxyxy,xxyy

mpqn

) f (En)

EnpEnq(Enm − �)

+ δnpδ̄nq

M
xyxy,xxyy
mnnq + M

xyxy,xxyy
mnqn + M

xyxy,xxyy
mqnn

E2
nq

×
(

(Emn + Eqn + �)f (En) + Eqn(Emn + �)f ′(En)

(Emn + �)2
+ f (Eq)

Eqm − �

)

− δnqδpqM
xyxy,xxyy
mnnn

(Emn + �) f ′(En) + 1
2 (Emn + �)2 f ′′(En) + f (En)

(Emn + �)3

− M
yxxy,xyxy
mnpq f (Eq)

(Emq + �)(Enq + �)(Epq + �)

}
, (7)

where we have introduced � = h̄ω. In a similar fashion, we write the trace over the second operator as

Tr
[
T (2)

xy (z)
] =

∑
mnp

{
N

yxyx
pmn − N

yxxy
pmn

(Em − z−)(En − z)(Ep − z)
− N

xxyy
mnp − N

yxxy
mnp

(Em − z−)(En − z−)(Ep − z)

}
, (8)

where we have defined

Nijkl
mnp = 〈m|Hi |n〉〈n|Hjk|p〉〈p|Hl|m〉. (9)

The residue theorem then leads to∮
C
f (z)Tr

[
T (2)

xy (z)
]
dz = 2πi

∑
mnp

{
Nxxyy,yxxy

mnp

f (Ep)

(Emp + �)(Enp + �)
+ δ̄np

N
yxyx,yxxy
pmn

Enp

(
f (En)

Emn + �
− f (Ep)

Emp + �

)

+ δnpNyxyx,yxxy
nmn

f (En) + (Emn + �) f ′(En)

(Emn + �)2

}
. (10)

The trace of the operators with the shifted argument is obtained in a similar fashion. By substituting z → z+ and z− → z in
Eq. (5) and relabeling slightly, one can show that the contour integral

∮
C f (z)Tr[T (1)

xy (z + �)] is given by Eq. (7), if one substitutes

� → −�, Mxxyy,yxxy
mnpq → Mxxyy,yxxy

qpnm , Myxxy,xyxy
mnpq → Mxyxy,xxyy

qpnm , Mxyxy,xxyy
mnpq → Myxxy,xyxy

qpnm . (11)

Similarly,
∮
C f (z)Tr[T (2)

xy (z + �)] is given by Eq. (10), with the substitutions

� → −�, Nxxyy,yxxy
nmp → Nyxxy,yxyx

mpn , Nyxyx,yxxy
pnm → Nyxxy,xxyy

pnm . (12)
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In this way we have arrived at expressions for the contour
integral of the trace in Eq. (1) in terms of sums over the
eigenstates of the Hamiltonian without magnetic field. These
sums can be truncated to include only states near the Fermi
energy. For small magnetic fields, this method is drastically
faster than direct diagonalization of the Hamiltonian with
magnetic field, the size of which diverges as the magnetic field
strength is reduced. In all numerical results presented below,
we set the thermal energy to kT = 0.025 eV and include a
broadening of h̄� = 0.05 eV.

B. Graphene

We now consider a next-nearest-neighbor (NNN) TB model
of gapped graphene, defined via the Hamiltonian

H (k) =
[

t ′g(k) + � −tf (k)
−tf ∗(k) t ′g(k) − �

]
, (13)

parametrized by the nearest- and next-nearest-neighbor hop-
ping parameters t = 3 eV and t ′ = 0.3 eV, respectively.
Here, f (k) = eikxac + 2e−ikxac/2 cos(

√
3kyac/2), while g(k) =

2 cos(
√

3kyac) + 4 cos(3kxac/2) cos(
√

3kyac/2), where ac =
a/

√
3 is the carbon-carbon distance. While the hopping

parameters can vary slightly depending on which ab initio
results they are fitted to, we note that the exact value of
the hopping terms do not alter our results qualitatively. We
set the on-site energy to zero. For t ′ = 0, this model has
electron-hole symmetry, which is inherited in the Dirac model
discussed above. We note that linearization of any TB model
will inevitably result in perfect electron-hole symmetry. As
discussed above, in the fully symmetrical situation, where
the chemical potential sits at the Dirac point energy, the off-
diagonal conductivity is identically zero for any such model.
This can be proven on quite general terms for all TB models
exhibiting π -π∗ symmetry, for which contributions from
conjugate transitions exactly cancel in the fully symmetrical
case.16,17 Introducing next-nearest-neighbor coupling breaks
electron-hole symmetry and, as we will now demonstrate,
leads to a markedly different magneto-optical response of
graphene.

In Fig. 2 we show the calculated optical Hall conductivity
of graphene, with the chemical potential at the Dirac point
energy. While the Dirac approximation (and nearest-neighbor
TB) predicts a zero response in this case, our NNN TB model
suggests a clear resonance at h̄ω = 2�. This drastic deviation
from the Dirac model is due to the broken electron-hole
symmetry, which means that conjugate transitions in the
optical response no longer cancel entirely.17 The strength of
the resonance decreases as the magnitude of the band gap is
increased, in agreement with previous results showing that
a sufficiently large band gap effectively quenches the effect
of the magnetic field, provided � � h̄ωc.17 However, the
magnitude of this correction to the Dirac response is quite
appreciable, suggesting that these deviations from the Dirac
model should be measurable in experiments. We note that,
as expected, numerical calculations show similar results for
a nearest-neighbor model if overlap between neighboring π

orbitals is included.
For comparison with the perturbative results, we also show

the Hall conductivity for � = 0.1 eV and a magnetic field
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FIG. 2. (Color online) Optical Hall conductivity σxy as a function
of photon energy for ordinary graphene and gapped graphene with
increasing values of the mass term. The chemical potential is in
the middle of the gap. The conductivity is shown relative to the
zero-frequency conductivity of graphene σ0 times the square of
the cyclotron energy h̄ωc. The solid (dashed) lines show the real
(imaginary) part of the conductivity. To ease visibility, the response
of ordinary graphene has been cropped. The DC value of ordinary
graphene is σxy(0) � (h̄ωc)2σ0 × 1.03 eV−2. The thin line shows the
real part of the Hall conductivity for � = 0.1 eV and a magnetic field
of B = 26.3 T.

strength of B = 26.3 T, calculated using standard, nonpertur-
bative tight-binding methods.17 We note that these calculations
involve a Hamiltonian with 12000 × 12000 elements for what
is a quite strong magnetic field. The relationship with the
perturbative result is evident in the figure, and illustrates the
fact that the perturbative results still have predictive power
for the strength of the response even in substantial magnetic
fields. In particular, the perturbative results correspond to
an averaging of the oscillations occurring due to individual
Landau levels, which for smaller magnetic field strengths could
presumably be caused by a broadening of the order of the
cyclotron energy.

To further corroborate these findings, we will now derive
an approximate, semianalytical expression for the optical Hall
conductivity in the next-nearest-neighbor model. We first note
that linearizing the NNN Hamiltonian in Eq. (13) near the K

point yields the same result as the nearest-neighbor model,
except for a constant diagonal term. Instead, we proceed by
expanding the diagonal NNN term to second order near the K

point, yielding the approximate Hamiltonian

H (k) �
[

9
8τκ2 + � 3

2 (κx − iκy)

3
2 (κx + iκy) 9

8τκ2 − �

]
, (14)

where we have defined κi = tkiac and introduced the param-
eter τ = 2t ′/t2, quantifying the perturbation due to NNN
coupling. The eigenvalues of this Hamiltonian read E± =
9
8τκ2 ±

√
�2 + 9

4κ2. We now proceed in a manner similar
to that of the Appendix; i.e., we evaluate the trace of Txy(z),
integrate out the angular component of the Brillouin zone inte-
gral, and then use the residue theorem to perform the contour
integral over z in Eq. (1). In this manner, we find that the
optical Hall conductivity in the NNN model is approximately
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given by

σxy(ω) = σ0
4ω2

c

πω2

∫ ∞

�

1
2τ (3ε2 − �2)h̄2ω2 [f (E+) − f (E−)] + a−(ε)f ′(E−) + a+(ε)f ′(E+)

ε2(h̄2ω2 − 4ε2)
dε, (15)

where we have introduced

a±(ε) = ε
{
2ε(τε ± 1)(1 − (τε)2)(ε2 − �2) − h̄2ω2

( ± ε − 1
2τ [(τε)2 − 1 ± 2τε](ε2 − �2)

)}
, (16)

where E± = 1
2τ (ε2 − �2) ± ε, with ε =

√
�2 + 9

4κ2. In Fig. 3 we compare the numerical results with those obtained by
numerical integration of the analytical result derived above. We note that there is excellent agreement between the two methods.

C. Graphene antidot lattices

Nanostructured graphene systems, with Wigner-Seitz unit
cells containing on the order of hundreds of atoms, are practi-
cally impossible to handle using direct diagonalization of the
TB Hamiltonian in the presence of a realistic magnetic field.
To illustrate the power of the perturbative method presented
above, we now consider the magneto-optical response of
periodically perforated graphene, so-called graphene antidot
lattices (GALs).21 The low-energy spectrum of these structures
can be quite accurately described in a gapped graphene model,
by fitting the mass term to coincide with half the magnitude
of the GAL band gap.29 We now compare TB results to
such a continuum description of GALs. For these results
we ignore next-nearest-neighbor coupling, to illustrate how
deviations from a continuum approximation emerge even in
the simplest nearest-neighbor TB treatment. We denote a
given GAL structure as {L,R}, where L is the side length
of the hexagonal Wigner-Seitz cell, while R denotes the
radius of the circular hole in the middle of the cell, both in
units of the graphene lattice constant. We consider a geometry
for which the superlattice basis vectors are parallel to the
carbon-carbon bonds, as such structures always exhibit band
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FIG. 3. (Color online) Optical Hall conductivity σxy as a function
of photon energy for ordinary graphene and gapped graphene with
increasing values of the mass term. The chemical potential is
in the middle of the gap. The conductivity is shown relative to
the zero-frequency conductivity of graphene σ0 times the square
of the cyclotron energy h̄ωc. The solid (dashed) lines show the
real (imaginary) part of the conductivity. The thin lines show the
corresponding results obtained via the semianalytical expression
derived in the main text.

gaps.30 As an example, Fig. 1(b) shows the computational
cell of a {4,2} GAL, highlighted with gray shading. We note
that the rectangular unit cell contains 144 carbon atoms.
For comparison, a standard nonperturbative calculation of
the magneto-optical properties would require a magnetic unit
cell consisting of 72000 carbon atoms, even for a substantial
magnetic field strength of 40 T.

In Fig. 4 we show the optical Hall conductivity of the
{4,2} GAL calculated using the perturbative approach. For
comparison we also show the corresponding result for gapped
graphene, with a mass term equal to half the band gap of
the GAL, � � 0.58 eV. In both cases, we fix the chemical
potential at the lower band gap edge; i.e., μ = �. We find
reasonable agreement between the full GAL calculations and
the simpler gapped graphene model. However, we note that
a distinct feature of the GAL structure is the additional
resonance near h̄ω = 1.65 eV, which is absent in the simpler
gapped graphene Dirac model. This resonance occurs due to
transitions between bands that are not present in a simple
two-band gapped graphene model of GALs. We will explore
the details of the magneto-optical response of graphene antidot
lattices in future work, and include the result here mainly to
emphasize the power of the perturbative formalism presented.
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1
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(
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Re(σxy)

Im(σxy)

TB

Dirac

FIG. 4. (Color online) Optical Hall conductivity σxy as a func-
tion of photon energy for the {4,2} graphene antidot lattice. The
conductivity is shown relative to the zero-frequency conductivity of
graphene σ0 times the square of the cyclotron energy h̄ωc. The blue
(red) lines show the real (imaginary) part of the conductivity. The
thick lines show the results of the perturbative method applied to the
GAL structure, while the thin lines are results of a gapped graphene
Dirac model with a band gap corresponding to the GAL.
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V. SUMMARY

A perturbative approach to calculating the optical Hall
conductivity of graphene structures has been presented and
applied to tight-binding models of graphene and graphene
antidot lattices. The optical Hall response of graphene shows
significant deviations from a simple Dirac treatment. While the
Dirac model predicts a Hall conductivity of identically zero
for a chemical potential at the Dirac point energy, results from
our next-nearest neighbor tight-binding model indicate clear
resonances at the band gap. The numerical results suggest that
these effects should be measurable in experiments. Results
for graphene antidot lattices illustrate that in this case, even
the simple nearest-neighbor tight-binding model gives quali-
tatively different results than a simple Dirac approximation.
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APPENDIX: LINEARIZED GRAPHENE

Linearizing the tight-binding Hamiltonian of gapped
graphene near the K point results in the celebrated Dirac
approximation of graphene,

H =
[

� 3
2 (κx − iκy)

3
2 (κx + iκy) −�

]
, (A1)

where we have introduced κi = tkiac, with ac the nearest-
neighbor distance ac = a/

√
3. We use this form of the Hamil-

tonian to evaluate the trace, noting that the linearization means
that T (2)

xy = 0. In polar coordinates (κx,κy) = κ(cos φ, sin φ)
we find, after integrating over the angular component,∫

dφ Tr[Txy(z)]

= 10368πt4a4
c�(� − 2z)[z(� − z) + �2]

[9κ2 − 4((� − z)2 − �2)]2[9κ2 − 4(z2 − �2)]2
, (A2)

where � = h̄ω is the photon energy. We now use the residue
theorem to perform the contour integral over z, yielding

∮
C
dz if (z)

∫
dφ Tr[Txy(z) + Txy(z + �)]

= 81π2t4a4
c (9κ2 − 2�2)

2�
√

9κ2 + 4�2(9κ2 + 4�2 − �2)

× [f ′(−
√

9κ2/4 + �2) − f ′(
√

9κ2/4 + �2)], (A3)

where poles at z = 2� ±
√

9κ2/4 + �2 = 2� ± ε(k) have
been ignored because, as discussed in the paper, the contour
explicitly excludes these points. Inserting this result in Eq. (1)
of the paper and converting the Brillouin zone integration
to an integral over energy, this leads to Eq. (4) of the main
text. Taking as their starting point the Landau level structure
of gapped graphene, Gusynin et al. have previously derived
the off-diagonal magneto-optical conductivity of gapped
graphene.28 Their result is stated as a sum over Landau
levels,

σxy(ω)

σ0
= 2h̄2ω2

c

π

∞∑
n=0

([f (−εn+1)

− f (−εn)] − [f (εn) − f (εn+1)])

×
[(

1 − �2

εnεn+1

)
1

(εn+1 − εn)2 − �2

+
(

1 + �2

εnεn+1

)
1

(εn+1 + εn)2 − �2

]
, (A4)

where the energies are εn =
√

�2 + nh̄2ω2
c for n � 0, yielding

εn+1 = εn

√
1 + h̄2ω2

c/ε
2
n � εn + h̄2ω2

c/(2εn) in the low-field
limit. Thus, in the continuum limit dε

dn
= h̄2ω2

c/2. Replacing
f (εn) − f (εn+1) → −f ′(εn) dε

dn
and converting the sum to an

integral via
∑

n
dε
dn

→ ∫
dε, we recover Eq. (4).
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