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Band gaps in graphene via periodic electrostatic gating
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Much attention has been focused on ways of rendering graphene semiconducting. We study periodically gated
graphene in a tight-binding model and find that, contrary to predictions based on the Dirac equation, it is possible
to open a band gap at the Fermi level using electrostatic gating of graphene. However, comparing to other methods
of periodically modulating graphene, namely, perforated graphene structures, we find that the resulting band gap
is significantly smaller. We discuss the intricate dependence of the band gap on the magnitude of the gate potential
as well as the exact geometry of the edge of the gate region. The role of the overlap of the eigenstates with the
gate region is elucidated. Considering more realistic gate potentials, we find that introducing smoothing in the
potential distribution, even over a range of little more than a single carbon atom, reduces the attainable band gap
significantly. This represents a serious challenge to achieving gapped graphene via periodic gating.
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I. INTRODUCTION

While graphene1 has proven to be a remarkable mate-
rial, with electronic properties that are interesting from a
fundamental2,3 as well as a technological viewpoint,4,5 the
absence of a band gap severely limits its possible applications.
Several methods have been proposed for opening a gap in
graphene. Relying on quantum confinement effects, the most
immediate way of making graphene semiconducting is by
reducing the dimensionality by cutting graphene into narrow
ribbons. Such so-called graphene nanoribbons (GNRs) have
band gaps that in general scale inversely with the width of
the GNR, but which are very sensitive to the exact geometry
of the edge of the ribbon.6–8 Related to these ideas, period-
ically perforated graphene, termed graphene antidot lattices,
effectively results in a network of ribbons and has been shown
to be an efficient way of inducing an appreciable band gap in
graphene.9 This idea has been successfully applied to fabricate
simple graphene-based semiconductor devices.10,11 Modifying
graphene via adsorption of hydrogen presents another route
towards opening a gap in graphene, with fully hydrogenated
graphene exhibiting a band gap of several electron volts,12,13

while patterned hydrogen adsorption yields band structures
resembling those of graphene antidot lattices, with reported
band gaps of at least 450 meV.14

The prospect of opening a band gap in graphene via
electrostatic gating is intriguing since it would allow for
switching between semimetallic and semiconducting behavior
and to dynamically alter the band gap to fit specific applica-
tions. This makes it significantly more flexible than proposals
relying on structural modification of graphene. However, a
linearization of the tight-binding Hamiltonian of graphene,
resulting in the now widely studied Dirac equation (DE) of
graphene,2,15 suggests that while magnetic confinement of
the Dirac fermions of graphene is possible,16,17 they can not
be confined by electrostatic gating, due to the phenomenon
of Klein tunneling.18,19 Thus, while periodic gating of usual
semiconductor heterostructures such as, e.g., GaAs quantum
wells, does induce gaps in the dispersion relation,20 previous
theoretical studies have indicated that band gaps are induced

for neither one-dimensional21,22 nor two-dimensional23,24 pe-
riodic gating of graphene.

These studies have taken as their starting point the Dirac
model of graphene, which is a low-energy continuum model,
ignoring atomistic details. Here, we instead use a more
accurate tight-binding (TB) model to study periodically gated
graphene. For sufficiently smooth potentials, the low-energy
electronic properties are expected to be well described by both
the DE and TB models. However, a vital difference is that
atomistic details are included in TB, whereas DE represents
a continuum approximation. Consequently, in contrast to
continuum (Dirac) models, we find that the TB model suggests
that it is indeed possible to open a band gap in graphene via
periodic gating, provided the potential is sufficiently abrupt.
The aim of this paper is twofold: (i) to compare periodically
gated graphene with graphene antidot lattices; in doing so, we
will illustrate that, contrary to what may be expected from the
Dirac equation, a sufficiently large scalar potential, i.e., not
necessarily a mass term, yields a band structure that is highly
similar to that of perforated graphene structures; (ii) to serve as
a feasibility study of periodic gating as a means of inducing a
band gap in graphene. To this end, we will illustrate and discuss
the nontrivial dependence of the band gap on the gate potential,
as well as the intricate relation between band gap and the edge
geometry of the gated region. These results will also serve
to illustrate some of the key differences between graphene
and ordinary two-dimensional electron gases. While, initially,
the potential will be modeled as a simple step function, we
will show in the following that introducing smoothing in the
potential distribution severely reduces the attainable band gap.

Continuum and atomistic models of periodically gated
graphene have previously been compared in Ref. 25. That
study, however, focused on a single value of the potential
strength and only considered structures that are rotated 30◦
compared to those of this work and, therefore, do not neces-
sarily display any band gap even for perforated structures.26

Moreover, in this work, we examine in detail the nontrivial
dependence of the band gap on the magnitude of the potential
and we consider more realistic, smooth potential profiles.
Finally, we elucidate the intricate dependence on the precise
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FIG. 1. (Color online) Unit cells used in the calculations for
the {12,5} lattice. (a) Perforated graphene sheet, with carbon atoms
removed in the region of the antidot. (b) Staggered potential (mass
term) in the antidot region. The color indicates the sign of the onsite
energies. (c) Constant gate potential in the antidot region. (d) Gate
potential modeled via Eq. (2), assuming the gate is directly below
the graphene sheet, with no insulating layer in-between. The lower
panel illustrates the potential of each model on the separate A and B

sublattices.

edge geometry and show how the energy gap correlates with
the gate region overlap of electron and hole states.

II. MODELS

In Fig. 1, we illustrate the graphene structures that we will
consider in this article. We consider only superlattices with
triangular symmetry, as shown in the figure. An important
decision lies in the choice of the angle between the basis
vectors of the superlattice and the carbon-carbon bonds in
graphene. In particular, if the superlattice basis vectors are
rotated 30◦ compared to the carbon-carbon bonds (such as in
Ref. 25), Clar sextet theory predicts that perforated graphene
structures only exhibit significant band gaps for every third
value of the side length of the hexagonal unit cell.26 In contrast
to this, perforated graphene structures with basis vectors
parallel to the carbon-carbon bonds always have band gaps.
We choose to focus in this paper on the latter geometries, in
order to ensure that the superlattice symmetry in itself does
not prohibit the emergence of a band gap.

We characterize a given structure by {L,R}, where L

denotes the side length of the hexagonal unit cell, while
R is the radius of the central region, both in units of the
graphene lattice constant, as illustrated in Fig. 1. In these
units, L also corresponds to the number of benzene rings
along each edge of the unit cell. Note that the exact geometry
of the edge of the central region differs greatly depending
on the radius R. In the following, we discuss in detail the
crucial dependence of the results on the edge geometry.
We will consider four distinct ways of periodically mod-
ifying graphene: (a) perforated graphene (graphene antidot
lattices), with carbon atoms removed from the central region,
(b) a periodic mass term, nonzero only in the central region,
and (c) periodically gated graphene, with a constant gate
potential within the central region and a vanishing potential
outside. Furthermore, to discuss the feasibility of realizing
gapped graphene via periodic gating, we will also consider (d)
periodically gated graphene, with a more realistic model of
the spatial dependence of the gate potential, obtained from a

solution to the Laplace equation. Focus will be on periodically
gated graphene, with the other forms of modulation included
for comparison only.

To illustrate the dependence of the results on the exact edge
of the gate or mass region, we will use a Dirac model as well as
a more accurate tight-binding treatment, in which the atomistic
details of the structures are included. We find significant
discrepancies between these two methods, quantitatively as
well as qualitatively. In particular, we will show that the DE
does not predict a band-gap opening for periodic gating, which
is present in the TB results. In what follows, we briefly describe
the two models. In the continuum model of the problem, we
employ the Dirac Hamiltonian

HD =
[

�(x,y) vF (p̂x − ip̂y)
vF (p̂x + ip̂y) ±�(x,y)

]
, (1)

where vF � 106 m/s is the Fermi velocity, while �(x,y)
denotes the gate potential or mass term. Here, the + (−) is
used when modeling a gate potential (mass term). Imposing
periodic Bloch boundary conditions at the edge of the unit
cell, we solve the problem in a plane-wave spinor basis
〈r|AG〉 = ( 1

0 )ei(G+k)·r and 〈r|BG〉 = ( 0
1 )ei(G+k)·r, with k the

Bloch wave vector and G the reciprocal lattice vectors.
We take �(r) = V0�(R − r), with �(r) the Heaviside step
function, yielding �(G) = 2πRV0J1(GR)/(GA), where A is
the unit-cell area, while J1(x) is the Bessel function of the first
kind. A total of 1058 plane-wave spinors were included in the
calculations to ensure convergence of the results.

In the tight-binding model, we include only nearest-
neighbor coupling between π orbitals, parametrized via the
hopping term −t , with t = 3 eV. We ignore the overlap
between neighboring π orbitals, assuming that our basis is
orthogonal, and set the onsite energy of the π orbitals to
zero. This parametrization accurately reproduces the Fermi
velocity of graphene, and is also in quantitative agreement
with density functional theory when applied to perforated
graphene structures.27 For periodically gated graphene, we
set the diagonal terms of the Hamiltonian equal to the gate
potential. In the case of a mass term, the diagonal terms become
±V0, with the sign depending on which sublattice the carbon
atom resides on. For perforated graphene, atoms are removed
entirely in the region of the hole, ensuring that no dangling
bonds are created. While including next-nearest-neighbor
coupling, as well as taking into account the nonorthogonality of
the basis set, will change our results quantitatively, we expect
the overall trends and the conclusions to remain the same in
more accurate models.

III. BAND STRUCTURES

In Fig. 2, we show the band structure for a {12,5} graphene
antidot lattice, i.e., periodically perforated graphene, and
compare to the case of a periodic mass term, modeled using
either the TB or the DE approach. A sufficiently large mass
term should ensure that electrons are excluded entirely from
the region of the mass term, and we thus expect relatively
good correspondence with perforated graphene. In the figure,
we consider the case where the mass term is equal in size
to the TB hopping term V0 = t . As expected, we find quite
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FIG. 2. (Color online) Band structures of the {12,5} lattice. The
solid, black lines show results for perforated graphene, calculated
using a TB model. The blue, dashed (red, dotted) lines correspond
to graphene with a periodic mass term of V0 = t , calculated using
the TB (DE) model. The thick, red line shows the location of the
Fermi level. Note the perfect electron-hole symmetry in this case,
and the agreement on the magnitude of the band gap between all
three methods.

good agreement between all three methods. In particular, the
magnitudes of the band gaps are in near-perfect agreement.
Using a finite, but sufficiently large mass term in the DE
model thus yields much better results than models where
the limit of infinite mass term is used to impose boundary
conditions on the edge of the hole in the DE model.27 Note
that electron-hole symmetry is preserved for all models. For
higher-lying bands, the differences between the DE and TB
results become more pronounced, as the linear approximation
of the DE model breaks down. Further, comparing the case
of perforated graphene to that of a periodic mass term in the
TB model, we see significant differences in the higher-lying
bands. However, we note that increasing the mass term further
results in excellent agreement with the perforated graphene
case, for all bands shown.

A periodic mass term is expected to induce a gap in
graphene due to the fact that it explicitly breaks sublattice
symmetry via the σ̂z operator in the continuum model or,
similarly, through the staggered onsite potential in the TB
approach. Contrary to this, analysis of periodic potentials in a
DE model of graphene suggests that periodic gating does not
induce a gap in graphene around the Fermi level,21,22 but rather
leads to the generation of new Dirac points near the superlattice
Brillouin zone boundaries.23 Superlattices lacking inversion
symmetry have been suggested as a means of achieving
tunable band gaps in graphene, based on results using a DE
model.28 However, these results were recently found to be
based on numerical errors.29 Indeed, based on the DE model,
a gap can not be produced by any Hamiltonian that preserves
time-reversal symmetry, i.e., H = σ̂yH

∗σ̂y , where σ̂y is the
Pauli spin matrix while H ∗ denotes the complex conjugate
(not the Hermitian conjugate) of the Hamiltonian.30 A pure
scalar potential, such as the one we consider for periodically
gated graphene, see Eq. (1), preserves this symmetry and the
DE model thus suggests that periodic gating does not open
a band gap. Instead, a combination of a scalar as well as a
vector potential is needed,30 such as, e.g., in gated strained
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FIG. 3. (Color online) Band structures of a periodically gated
{12,5} lattice. The solid, black (blue, dashed) lines show results for
periodically gated graphene, calculated using a TB (DE) model. The
gate potential is V0 = t/2. The thick, red line shows the location of
the Fermi level. Note the nearly dispersionless band near −0.2 eV.
Inset: A zoom of the band structure near the � point, illustrating the
emergence of a band gap in the TB results and the absence of such a
gap in the DE model.

graphene structures, where the vector potential emerges from
the pseudomagnetic field created by the strain.31

In Fig. 3, we show the band structure of a periodically gated
{12,5} graphene structure, with a gate potential of half the TB
hopping term V0 = t/2. Results are shown for TB and DE
models, respectively. Contrary to a periodic mass term, we see
that, as could be expected, periodic gating breaks electron-
hole symmetry and shifts the Fermi level to higher energies.
Comparing DE and TB results, we note that there is quite
good agreement overall between the two methods. However,
a crucial difference emerges when considering the bands in
close vicinity of the Fermi level, as illustrated in the inset:
while the DE results suggest that periodic gating does not
open a band gap, TB results demonstrate that a band gap does
occur right at the Fermi level. We attribute this to a local
sublattice symmetry breaking at the edge of the gate region
and substantiate this claim below. We note that while a band
gap appears, the magnitude of the band gap is of the order of
tens of meV, an order of magnitude smaller than that of the
corresponding perforated graphene structure. This dramatic
qualitative difference between TB and DE modeling agrees
with previous results25 comparing density functional theory
and Dirac models for rotated triangular geometries.

Above, we illustrated how a sufficiently large mass term
serves as an excellent model of a hole in graphene (see
Fig. 2). Because a simple scalar potential can not confine
Dirac electrons,18,19 one would expect that modeling the hole
via a large gate potential would be inaccurate. In Fig. 4,
we show the band structure of periodically gated graphene,
with a very large gate potential of V0 = 10t . While this is a
very large value of the gate potential, our point here is not
whether such a periodic gate can be realized, but rather that
there is theoretical agreement between this model and that
of perforated graphene. To demonstrate this, we also show
the corresponding perforated graphene structure. Contrary to
the aforementioned expectations, we see that the periodically
gated graphene structure is an excellent model of perforated
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FIG. 4. (Color online) Band structures of a periodically gated
{12,5} lattice. The solid, black lines show results for perforated
graphene, calculated using a TB model. The blue, dashed lines
correspond to graphene with a periodic gate potential of V0 = 10t ,
calculated using the TB model. Bands near the original Dirac energy
of graphene are shown. For the gated structure, the Fermi level is far
removed from the Dirac energy of graphene, outside the range of the
figure, and no band gap occurs at the Fermi level for this structure.

graphene. We note that increasing the gate potential further
results in near-perfect agreement between the periodically
gated and the perforated structures. With a gate potential of
V = 10t , we are way beyond the linear regime of the band
structure, for which a Dirac treatment of graphene is viable,
which explains why the theoretical arguments pertaining to
Dirac electrons break down in this case. We stress that the
Fermi energies of the two structures are very different, and
that no band gap occurs at the Fermi energy of the gated
structure. However, the results indicate that the bands near the
Fermi energy of perforated graphene can be quite accurately
modeled via a periodic gate potential, provided the magnitude
of the gate potential is significantly larger than the hopping
term.

A. Gate region overlap

Returning now to the band structure for the periodically
gated {12,5} lattice, shown in Fig. 3, we note the appearance
of a nearly dispersionless band near −0.2 eV. This state is
localized predominantly within the gate region. In the upper
panel of Fig. 5, we show the overlap of all eigenstates with
the gate region, i.e.,

∫
gate dr|�(r)|2, as a function of energy,

calculated at the � point. For comparison, we show the
corresponding results for a periodic mass term in the lower
panel. We note that several states exist, which have significant
overlap with the gate region, also at energies below the Fermi
level. An example of one such state is shown in the figure.
As the gate potential is increased further, these states become
less energetically favorable, and are eventually all situated at
energies well above the Fermi level. In stark contrast to this,
a periodic mass term dictates perfect electron-hole symmetry,
and thus always predicts states below the Fermi level having
significant overlap with the gate region. In fact, as the mass
term is increased, states nearly entirely localized within the
mass term region develop at both extrema of the spectrum.
Below, we will illustrate how this fundamental difference
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FIG. 5. (Color online) Overlap of eigenstates with the gate region,
calculated at the � point for the {12,5} lattice with a gate potential
(upper panel) or mass term (lower panel) of V0 = t/2. The Fermi
level is indicated by the dashed, vertical line. The inset in the upper
panel shows the eigenstate corresponding to the state highlighted with
a circle. The size of the filled, colored circles indicates the absolute
square of the wave function. The black circle indicates the radius of
the gate region.

between a mass term and a scalar potential manifests itself
via the dependence of the band gap on the magnitude of the
gate potential for periodically gated graphene.

IV. BAND GAPS IN PERIODICALLY GATED GRAPHENE

Having determined that a TB treatment of periodically gated
graphene does indeed suggest the opening of a band gap at the
Fermi level, we now proceed to investigate the behavior of the
band-gap magnitude in more detail. From here on, all results
shown have been calculated using the TB model.

In Fig. 6, the solid lines show the magnitude of the band
gap at the Fermi level for three different lattices, {7,3}, {12,5},
and {15,6.3}, all of which have approximately the same ratio
R/L of gate radius to side length of the hexagonal unit cell.
When plotted against the gate radius times the gate potential,
the resulting curves emerge as simple scaled versions of each
other, as seen in Fig. 6. While, initially, raising the gate
potential increases the band gap, a maximum gap is reached at
a certain gate potential, after which the band gap diminishes.
This behavior is completely different from the case where the
potential is replaced by a mass term, as illustrated in the inset of
the figure. In this case, the band gap continues to increase until
a saturation point is reached in the limit where the structure
resembles that of perforated graphene. While the three periodic
lattices indicated with solid lines in Fig. 6 result in similar
dependencies of the gap on RV0, we stress that this is not the
case for all lattices, even if the ratio R/L is approximately
the same. To illustrate this, we also show in Fig. 6 results for
the {7,2.8} lattice. The dependence of the band gap on gate
potential differs markedly for this lattice. This indicates that
the exact geometry at the edge of the gate region plays a large
role in determining the band gap, in agreement with findings
in Ref. 25.
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FIG. 6. (Color online) Band gap at the Fermi level for periodically
gated graphene, as a function of the gated radius (in units of the
graphene lattice constant) times the gate potential in units of the TB
hopping term. Results are shown for three different lattices (solid
lines), with roughly equal ratios R/L of the radius of the gate region
to the side length of the hexagonal unit cell. The dashed line shows
the results for the {7,2.8} lattice, which has roughly the same R/L

ratio. Inset: Results for {12,5}, when the potential is replaced by a
mass term. The dashed line indicates the band gap for a perforated
graphene structure.

A. Edge dependence

To illustrate in more detail the role of the edge in determin-
ing the band gap, we show in Fig. 7 the band gap as a function
of the gate potential for lattices {7,R} with increasing values
of R. The radius is increased in the minimum steps resulting in
new geometries. The structures with R ∈ {2.5, 3.0, 3.3} show
quite similar behaviors. In particular, a maximum band gap
is reached at RV0 � 2t in all three cases. The band gap then
closes, but reopens once more as the gate potential is increased
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FIG. 7. (Color online) Band gap at the Fermi level for periodically
gated graphene. The band gap is shown as a function of the gate radius
(in units of the graphene lattice constant) times the gate potential in
units of the TB hopping term. Results are shown for lattices {7,R}
with varying R. Below RV0 � 3t , all gaps are direct (�–�). Above
this transition, the �–� gaps (dashed lines) exceed the indirect �–K

gap. The unit cells of the {7,R} lattices are shown above, in order of
increasing radius. The edge geometry is highlighted.

further. Around RV0 � 3t , the band gap changes from direct
(�–�) to indirect (�–K) as the gate voltage is raised. The
dashed lines in the figure illustrate the �–� gap above the
direct- to indirect-gap transition. However, after a slight further
increase of the gate voltage, the final closing of the band gap
occurs as the energy at the K point moves below that at the �

point, resulting in crossing bands at the Fermi level. Finally,
we note that while the three lattices show similar behavior, the
dependence of the band gap on the radius of the gate region
is clearly not monotonic, and a larger gate region does not
necessarily result in a larger band gap.

In contrast to the similarities of the other three structures,
the dependence of the band gap on the gate potential for the
{7,2.8} lattice differs greatly. In the upper panel of Fig. 7
we show the unit cells corresponding to the {7,R} lattices
considered, with the edge geometries highlighted. The {7,2.8}
lattice stands out from the rest of the geometries in that
the entire edge of the gate region is made up from several
pure zigzag edges. We stress that the sublattice imbalance
for the entire edge is zero, while there is a local sublattice
imbalance on the individual straight zigzag edges. In contrast
to this, the other geometries have gate regions with zigzag
as well as armchair edges. We find that the general trend is
for zigzag edges to quench the band gap of the periodically
gated graphene structures, which we have also verified via
calculations of gate regions of hexagonal symmetry, which
always have pure zigzag edges. This trend can be explained
by noting that pure zigzag edges, such as, e.g., in zigzag
graphene nanoribbons6,7 or graphene antidot lattices with
triangular holes,32–34 lead to localized midgap states.35 For
periodically gated graphene, the edge is defined by a finite
potential rather than a complete absence of carbon atoms, so
we expect the tendency of electrons to localize on the edge to be
less pronounced. Nevertheless, our findings suggest that local
zigzag geometry still has the effect of quenching the band gap.
Since, in general, larger circular holes will have longer regions
of zigzag geometry at the edge of the gate region, this explains
why larger gate regions will not invariably lead to larger band
gaps. In the present case, we note that the {7,3.3} structure
indeed has a significantly smaller band gap than the {7,2.5}
structure. The {7,3.0} lattice is unique in that the equivalent
of dangling bonds are present at the edge of the gate region,
which further decrease the magnitude of the band gap.

B. Dependence on gate region overlap

First-order perturbation theory suggests that the depen-
dence of the energy of the eigenstate on the gate potential be
proportional to the overlap of the state with the gate region, i.e.,
∂E/∂V0 ∝ ∫

gate dr|�(r)|2. We thus expect the overlap with the
gate region of the two eigenstates closest to the Fermi level to
be a crucial parameter in describing the opening and quenching
of the band gap as the gate voltage is varied. We will also see
that it illustrates the crucial differences between graphene and
ordinary two-dimensional electron gases. In Fig. 8, we show
the overlap of the eigenstate with the gate region as a function
of the magnitude of the potential. The overlap is shown for
the eigenstates at the valence- and conduction-band edges,
and normalized by the ratio between gate and unit-cell areas.
A value of one thus indicates that the overlap with the gate
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FIG. 8. (Color online) Overlap of the eigenstates nearest the
Fermi level as a function of the gate radius (in units of the
graphene lattice constant) times the gate potential in units of
the TB hopping term. The solid lines show the overlap of the
highest valence-band state, while the dashed lines show the overlap
of the lowest conduction-band state. The overlap is shown relative to
the ratio between the area of the gate region and the unit-cell area.
The upper panel repeats the data from Fig. 7 showing the band gap.
Note that the overlaps of the two states are equal exactly when the
band gap is at a maximum, as highlighted for the {7,2.5} lattice with
the vertical black line. The left (right) inset illustrates schematically
the dependence of the conduction- and valence-band edges on the
gate potential in the regime where the overlap with the gate of the
state at the valence-band edge is smaller (larger) than that of the state
at the conductance-band edge.

region is the same as if the eigenstate is evenly distributed
throughout the unit cell, while a value larger (smaller) than
one suggests that the eigenstate is localized predominantly
inside (outside) the gate region. As we saw also in Fig. 5,
the states near the Fermi level both have quite large overlaps
with the gate region, even when the potential is of the order
of the TB hopping term. Initially, for low values of the gate
potential, the overlap with the gate region of the unoccupied
state in the conduction band is larger than the corresponding
overlap of the occupied state in the valence band. Relying
on first-order perturbation theory, we thus expect the energy
of the conductance-band state to increase more strongly with
the gate potential than the valence-band state, resulting in a
larger band gap as the gate potential is raised, as illustrated
in the left inset of Fig. 8. However, contrary to what would
be expected for an ordinary two-dimensional electron gas, we
see that as the potential is increased further, the valence-band
state also becomes localized predominantly within the gate
region. Indeed, eventually the overlap of the valence-band
state with the gate region becomes larger than the one of the
conduction-band state, which results in a quenching of the band
gap as the potential is increased further, as illustrated in the
right inset of Fig. 8. We note that the point where the overlap
of the two states with the gate region become equal exactly
matches the point where the band gap is at a maximum. This is

illustrated by the vertical, black line in the figure. The strong
influence of the exact edge geometry is apparent, manifesting
itself in a qualitatively different dependence of the overlap
on gate voltage for the {7,2.8} lattice. In particular, while the
gate region overlap of the valence-band state of the {7,2.5} and
{7,3.3} lattices initially decreases with the size of the potential,
both valence- and conduction-band states immediately start
localizing within the gate region for the {7,2.8} structure. This
leads to much faster quenching of the initial band gap.

C. Realistic potential profiles

As we have illustrated above, the band gap of periodically
gated graphene depends strongly on the edge geometry at
the boundary between the gated and the nongated regions.
So far, we have used a simple step function to model the
spatial dependence of the potential due to the gate. However,
it is obvious that in actual realizations of periodically gated
graphene, some form of smoothing of the potential will
inevitably be present. Due to the intricate relationship between
the band gap and the edge geometry, it is relevant to investigate
the effect of smoothing out the potential. In particular,
since the DE model predicts no gap at all, one may wonder
whether smoothing will cause the gap to close entirely.
Previous studies have included smoothing of the gate potential,
but with a smearing distance of the order 0.1 Å,25 small enough
that an atomically resolved edge can still be defined.

To model a more realistic gate potential, we use an
analytical expression for the potential distribution resulting
from a constant potential disk in an insulating plane, obtained
by direct solution of the Laplace equation. In cylindrical
coordinates, this reads as36

V (r,z) = 2V0

π
sin−1

(
2R√

(r − R)2 + z2 +
√

(r + R)2 + z2

)
,

(2)

with z the distance above the gate, while r is the dis-
tance from the center of the disk. Note that for z = 0,
the expression simplifies to V (r,0) = V0 for r � R, while
V (r,0) = 2V0 sin−1(R/r)/π for r > R. Of course, more exact
approaches such as, e.g., finite-element methods, could be
used to determine the potential distribution from a realistic
back gate. However, we choose to use this relatively sim-
ple analytical expression since we are mainly interested in
discussing the general trends that occur as the edge of the
potential region becomes less well defined. One could imagine
more elaborate setups that would generate sharper potential
distributions. To include such possibilities, we consider a
modified potential distribution Ṽ (r,z) = V0[V (r,z)/V0]η, with
the additional parameter η, which allows us to control the
smoothing of the potential further. As η → ∞, we approach
the limit where the potential is described by a Heaviside step
function, as in the results presented so far. We note that Eq. (2)
is derived for an isolated constant potential disk rather than a
periodic array of gates. Ignoring coupling between the different
gates, one simple way of improving this model would be to
add the potentials generated from the nearest-neighbor gates
to account for the overlap between them. However, this would
merely serve to smoothen out the potential further, as well

235432-6



BAND GAPS IN GRAPHENE VIA PERIODIC . . . PHYSICAL REVIEW B 85, 235432 (2012)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

4.5 5.0 5.5 6.0 6.5 7.0
0.0

0.2

0.4

0.6

0.8

1.0

V0 (eV)

B
a
n
d

g
a
p

(e
V

)
η → ∞

η = 20

η = 10

η = 5

η = 1

r/a

FIG. 9. (Color online) Band gap as a function of gate potential
for the {12,5} periodically gated graphene lattice. The potential
distribution due to the periodic gates is modeled via Eq. (2). We
assume the distance from the plane of the gate to the graphene layer
is zero. Results are shown for increased values of the η parameter,
which determines the strength of the smoothing. The inset illustrates
the potential distribution Ṽ /V0 for each case, with markers indicating
the radial position of the carbon atoms.

as add a constant background potential, effectively decreasing
the height of the potential barrier. Here, we are interested
in illustrating the critical dependence of the band gap on
smoothing out the potential, so we are adopting a “best-case”
scenario, which also means that we will use z = 0 throughout,
assuming that the graphene layer is deposited directly on the
periodic gates, with no insulating layer in-between.

In Fig. 9, we show the band gap for a {12,5} lattice as
a function of gate potential, for increased values of the η

parameter. While for η → ∞, corresponding to a Heaviside
step function distribution, the maximum band gap is about
33 meV, the band gap for η = 1 is drastically lower, with a
maximum value of only 0.9 meV. As we artificially decrease
the amount of smoothing by raising the value of η, we slowly
recover the maximum band gap attainable. However, we stress
that even for η = 20, which as shown in the inset of the
figure amounts to smoothing over a range of little more than a
single carbon atom, the maximum band gap has decreased
by more than 20% from the value at η → ∞. This suggests
that the band gap does indeed critically depend on an edge
effect, which is very quickly washed out as the potential
step is smoothed out over several carbon atoms. This is in
agreement with previous studies, which have indicated that
intervalley scattering is crucial in describing the band gap of
periodically gated graphene.25 In order for a scalar potential
to induce intervalley scattering, it must vary significantly on a
scale of the carbon-carbon distance, so that a local sublattice
asymmetry is introduced.

V. SUMMARY

By employing a tight-binding description of graphene,
we have shown that, contrary to what is predicted on the
basis of a continuum model, it is indeed possible to induce
a band gap in graphene via periodic, electrostatic gating.
Further, if the magnitude of the potential is made sufficiently
large, periodically gated graphene is an accurate model for
perforated graphene structures, with one caveat, namely,
that the Fermi level is far removed from the location of
the band gap. For smaller, more realistic values of the
gate potential, a band gap appears right at the Fermi level.
However, we find that the band gap is orders of magnitude
smaller than that of the corresponding perforated graphene
structure.

The dependence of the band gap on the gate potential
is highly nontrivial, and entirely different from the case
where graphene is modulated by a periodic mass term.
In particular, a maximum magnitude of the band gap is
reached, after which increasing the gate potential further
quenches the gap. Also, a transition from a direct (�–�) to an
indirect (�–K) semiconductor occurs for larger gate potentials.
The exact magnitude and dependence of the band gap on
gate potential depends critically on the precise geometry
of the edge of the gate region. In particular, large regions
of local zigzag geometries tend to result in significantly
smaller band gaps than geometries where armchair edges
dominate.

Because the emergence of a band gap relies on a local
sublattice asymmetry, we find that it is extremely fragile. If
smoothing is introduced in the potential distribution, such
that the edge of the gate region is no longer atomically
resolved, the magnitude of the band gap drops significantly.
Even if the smoothing occurs over a range of little more
than a single carbon atom, we find that the maximum band
gap decreases to less than 80% of the value for a perfectly
defined edge. This presents a serious challenge to opening a
band gap in graphene via periodic gating, and suggests that
periodic electrostatic gating as discussed in this paper does
not currently represent a feasible method of achieving gapped
graphene.
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