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Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields
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We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in
the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene
irradiated by an ac electric field. Several approximations are developed that allow one to develop a semianalytical
theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of
graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the
properties of the excitations in doped graphene are strongly influenced by the ac field. We also show that the
intensity of the external field is the critical control parameter for the stability of these excitations.
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I. INTRODUCTION

Graphene is a genuinely two-dimensional material whose
peculiar properties have received a lot of attention since its first
isolation in 2004.1,2 Structurally, it is a single-atom-thick layer
of graphite, i.e., a two-dimensional crystal, that remains stable
both when it is deposited over a substrate or when it is sus-
pended. Its electronic properties have attracted huge interest:
The low-energy excitations are chiral massless Dirac electrons
in two dimensions, thereby providing a new platform for
testing the basic tenets of solid state physics. This fact, which
ultimately arises from the honeycomb structure of the graphene
crystal lattice, is responsible for a strikingly different electronic
behavior as compared to the conventional two-dimensional
electron gases (e.g., in semiconductor heterostructures) studied
extensively in the laboratory.3,4

The effect of external fields in the low-energy properties of
the electric carriers in graphene has been a topic of extensive
research since the early days, as the discovery of the anomalous
quantum Hall effect witnesses.2,5 Understanding the behavior
of graphene in the presence of electrical and magnetic fields
is of major relevance both from a fundamental and an applied
point of view. The former, since new exotic behavior may
arise in the presence of external fields, and the latter, because
external fields can be used to manipulate its properties, for
instance by opening gaps in the electronic spectrum, which is
essential for applications in the semiconductor industry.

The effect of radiation on both monolayer and bilayer
graphene has been analyzed only recently, and has led
to the prediction of a variety of phenomena, such as the
photovoltaic Hall effect,6 the metal-insulator transition of
graphene,7 valley-polarized currents in both monolayer and
bilayer graphene,8,9 and the photoinduced quantum Hall effect
in the absence of magnetic fields.10 Other theoretical works in-
clude the analysis of ac transport properties through graphene
ribbons,11 graphene-based pn junctions,12 graphene-based
Fabry-Pérot devices,13 and the recent proposal of quantum
pumping in graphene by an external ac field.14 Experimentally
it has been found that a circularly polarized ac field induces a
dynamic Hall effect in graphene.15 Several studies have been
devoted to the theoretical analysis of the quasienergy spectrum
of graphene and graphene dots under ac fields,16–19 and the
optical properties of graphene have been studied by calculating

the optical conductivity.20 One of the earliest and yet most im-
portant findings in all these studies is that a circularly polarized
field induces a band gap at the Dirac point, along with dynami-
cal gaps at other momenta, all of which are tunable by the field
intensity. This is however not the case for a linearly polarized
field: There the anisotropic quasienergy spectrum shows dy-
namical gaps at nonzero momentum only in certain directions,
and especially no gap is induced at the Dirac point.16,20

In this paper we study theoretically the effect of a circularly
polarized ac electric field in the terahertz regime on the electron
excitation spectrum and on the electron-electron interaction.
The interactions are found to be affected qualitatively by
the external field, altering the nature of the single-particle
excitations as well as the many-particle excitations, both in
doped and undoped graphene. Special attention is payed to
the existence of a plasmon in undoped graphene, which is
not present in its field-free counterpart. In order to perform
this investigation, the natural object to study is the dynamical
polarizability, which has already been studied extensively in
graphene without an ac field.21–27

The structure of the paper is the following: In Sec. II,
we briefly introduce the Hamiltonian of graphene in the
presence of a circularly polarized electric field, emphasizing
the role of Floquet theory in Sec. II A and presenting several
approximations to the single-electron Hamiltonian valid for
weak fields in Sec. II B. Section III is dedicated to the
analysis of the dynamical polarizability: We derive a general
expression for the polarizability of graphene in an ac electric
field in Sec. III A and compare it with the corresponding
expression for the two-dimensional electron gas.28 Finally,
in Sec. III B the general formula is combined with the
analytical approximations in order to work it out both for
the noninteracting system and for the interacting system in the
random phase approximation (RPA).

II. SINGLE-ELECTRON PROPERTIES OF GRAPHENE
UNDER A CIRCULARLY POLARIZED

AC ELECTRIC FIELD

A. Model and technique

In the low-energy regime, the Hamiltonian for single-
electron excitations in graphene is the infamous Dirac
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Hamiltonian. In order to introduce a time-dependent electric
field we choose a gauge in which the latter is represented via a
gauge potential A(t), whose time dependence is that of a single
monochromatic and circularly polarized wave of frequency �:

A(t) = − E0

�
√

2
[x̂ sin(�t) − ŷ cos(�t)]. (1)

By using a minimal coupling scheme, the Hamiltonian for
graphene irradiated by this electric field reads

H (t) =
(

0 kx − iky + iAe−i�t

kx + iky − iAei�t 0

)
, (2)

with A = eE0/(
√

2�) and vF = h̄ = 1. Here the Hamiltonian
is expressed in terms of Bloch states of momentum k, which
is defined with respect to one of the valleys. Note that the
electric field does not couple the spin and valley degrees of
freedom in graphene, which remain as an extra degeneracy
NvNs = 4. The eigenstates of graphene in the absence of the
external field are two-dimensional spinors representing the
two components of the unit cell of the honeycomb lattice
in graphene, that once diagonalized give rise to two bands
(or Dirac cones). In the Dirac Hamiltonian, the pseudospin
has a scalar coupling with the momentum, and its eigenstates
are those whose pseudospin is either parallel or antiparallel
to its momentum. In fact, the mathematical structure of the
Hamiltonian coincides with that of an electronic spin coupled
through Rashba interaction to a magnetic field. In this analogy,
the momentum in graphene plays the role of the magnetic
field, and the pseudospin operator is analogous to the ordinary
spin, both having the same representation in terms of Pauli
matrices. This allows one to write the Hamiltonian H = σ · k.
In the presence of an external electric field an extra term
of the same nature arises in the Hamiltonian, now coupling
the pseudospin and the electric field, and inducing transitions
between the eigenstates for the isolated system. In a sense the
momentum and the electric field are competing dynamically
for the direction of the pseudospin, but no compromise can
be reached due to the time-dependence of the field, which
no longer allows for an analysis of the problem in terms of
stationary eigenstates.

To proceed, we apply the Floquet theorem, which is the
most suitable way to address time-periodic Hamiltonians
(detailed accounts can be found in Refs. 29–31). Floquet
theory states that for a Hamiltonian that is periodic in time,
H (t + 2π/�) = H (t), a complete set of solutions of the
time-dependent Schrödinger equation

H (t)|ψ(t)〉 = i
d

dt
|ψ(t)〉 (3)

can be written as
|ψα(t)〉 = e−iεα t |φα(t)〉, |φα(t)〉 = |φα(t + T )〉, (4)

where α contains the quantum numbers of the problem and
the so-called Floquet index, that we will label as l. The role
of this index is to classify the different sidebands, since εα ,
the quasienergies, are defined mod h̄�, being related by the
simple transformation

εα(l) = εα(0) + l�. (5)

In analogy to the Bloch theorem, the quasienergies can be
mapped into a first-time Brillouin zone, which is [−�/2,�/2],
and therefore corresponds to l = 0.

The Floquet states |φα(t)〉 have the same periodicity as the
driving field [see Eq. (4)] and can therefore be expanded into
a Fourier series:

|φα(t)〉 =
∞∑

n=−∞
ein�t

∣∣φn
α

〉
. (6)

The Floquet states are also defined in different branches of
solutions, being related between them by the transformation∣∣φn

α(l)

〉 = ∣∣φl+n
α(0)

〉
. (7)

Substituting Eq. (4) into Eq. (3) and using Eq. (6) yields a
static eigenvalue equation of the form∑

m

(Hnm − n�δmn)
∣∣φm

α

〉 = εα

∣∣φn
α

〉
. (8)

Defining now the Floquet Hamiltonian as Hnm
F = Hnm −

m�δmn, we see that a significant simplification has been
achieved: The time-dependent problem has been transformed
to a static problem, and, consequently, one can apply the
intuition about equilibrium problems to make statements
about a dynamical problem. The resulting equilibrium-like
observables derived within this framework have to be un-
derstood as time averages over a period of the external
field.

Let us now apply the Floquet formalism to the Hamiltonian
of graphene (2). In this case, the solutions are character-
ized by indices α = (k,σ,l), σ = ± being the pseudospin
index:

n�φn,a
α + (kx − iky)φn,b

α + iAφn+1,b
α = εαφn,a

α ,
(9)

n�φn,b
α + (kx + iky)φn,a

α − iAφn−1,a
α = εαφn,b

α .

Notice that a and b are the indices for the sublattices
of the honeycomb lattice. These equations can be written
in matrix form, where the infinite Floquet Hamiltonian
reads

HF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

... . .
.

· · · −� (kx − iky) 0 iA 0 0 · · ·
· · · (kx + iky) −� 0 0 0 0 · · ·
· · · 0 0 0 (kx − iky) 0 iA · · ·
· · · −iA 0 (kx + iky) 0 0 0 · · ·
· · · 0 0 0 0 � (kx − iky) · · ·
· · · 0 0 −iA 0 (kx + iky) � · · ·
. .

. ...
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)
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The structure of this Hamiltonian deserves a few comments.
The ac field A connects (2 × 2) graphene Hamiltonians
with energies n� and (n + 1)� and so on. Each of these
building blocks contributes with its own dispersion relation
(that of a Dirac cone) to the energy spectrum, and the field
introduces transitions between these cones. These transitions
are expressed as anticrossings in the spectrum, and become
exact crossings for A → 0. It can easily be seen that the
anticrossings occur at |k| ≈ n�/2, with n = 0,1,2, . . .. At
|k| ≈ �/2, e.g., the (+,0) and the (−,1) sideband anticross,
which would be a so-called one-photon resonance.

B. Analytical approximations to the single-particle Hamiltonian

The Floquet Hamiltonian, Eq. (10), can be diagonalized
numerically in order to analyze the energy spectrum and
its features. However, in order to simplify calculations and
to illuminate the main physics, here we resort to analytical
approximations which capture the main features whenever the
electric field intensity is sufficiently weak. We will show in
Sec. II C the full numerical results for the quasienergy spec-
trum in order to compare it with the analytical approximations.
Before introducing such approximations, it is convenient to
project the Hamiltonian (10) into another basis. As can be seen
in Fig. 1, for k = 0, the Floquet chain breaks up into a series
of disconnected two-level systems. We therefore diagonalize
the Hamiltonian for the two-level-system, and then write the
full Hamiltonian in the resulting basis. The Hamiltonian for
k = 0 reads

H k=0
F =

∑
n

n�
[∣∣φn,a

k=0

〉〈
φ

n,a
k=0

∣∣ + ∣∣φn,b
k=0

〉〈
φ

n,b
k=0

∣∣]
+ iA

[|φn,a
k=0

〉〈
φ

n+1,b
k=0

∣∣ − ∣∣φn+1,b
k=0

〉〈
φ

n,a
k=0

∣∣]. (11)

An excerpt of the series of (2 × 2) Hamiltonians is

H k=0
F =

⎛⎜⎜⎜⎝
n� iA 0 0

−iA (n + 1)� 0 0

0 0 (n − 1)� iA

0 0 −iA n�

⎞⎟⎟⎟⎠ . (12)

FIG. 1. (Color online) Sketch of the Hamiltonian for the circularly
polarized field. Note that if k = 0, the Hamiltonian breaks up into
disconnected two-level systems, in which site an is coupled to site
bn+1.

Out of the four eigenenergies of this matrix we are interested
in

ε±
l = l� ± 1

2
, (13)

with


 = �̃ − �, �̃ =
√

4A2 + �2.

These two energies fulfill limA→0 ε±
0 = 0; thus, we associate

the first Brillouin zone, l = 0, from the Floquet solutions, to
the solutions corresponding to graphene in the absence of an
external field. The corresponding eigenvectors are

|φ+
l 〉 = 1

N

(
2iA

∣∣φl−1,a
k=0

〉 + (
 + 2�)
∣∣φl,b

k=0

〉)
, (14)

|φ−
l 〉 = 1

N

(
(
 + 2�)

∣∣φl,a
k=0

〉 + 2iA
∣∣φl+1,b

k=0

〉)
, (15)

where N =
√

4A2 + (
 + 2�)2. From here on and for the rest
of the paper, we neglect the index k in the energies and vectors,
unless we have to distinguish between k and k + q.

Using these eigenvectors as a basis, we rewrite the full
Floquet Hamiltonian (10)

HF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

... . .
.

. . . ε+
n−1 F0kei� F1kei� 0 0 0 . . .

. . . F0ke−i� ε−
n−1 0 F ∗

1 kei� F2kei� 0 . . .

. . . F ∗
1 ke−i� 0 ε+

n F0kei� F1kei� 0 . . .

. . . 0 F1ke−i� F0ke−i� ε−
n 0 F ∗

1 kei� . . .

. . . 0 F2ke−i� F ∗
1 ke−i� 0 ε+

n+1 F0kei� . . .

. . . 0 0 0 F1ke−i� F0ke−i� ε−
n+1 . . .

. .
. ...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)
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where k = |k|, � = arctan ky/kx , and we introduced the three
functions F0, F1, and F2 that will form the basis for our
approximations:

F0 = (
 + 2�)2

4A2 + (
 + 2�)2
, F1 = 2iA(
 + 2�)

4A2 + (
 + 2�)2
,

(17)

F2 = 4A2

4A2 + (
 + 2�)2
.

All three functions in Eq. (17) are functions of A and �. For
small A/� � 1, one finds that F0 ≈ 1 and F1,2 ≈ 0; however
F1 increases linearly whereas F2 increases quadratically with
A. Note that for a two-level system driven by a linearly
polarized field, the nth-order Bessel function Jn (A/�) plays
the role of the function F0,1,2 presented here, and for a complete
analysis one has to consider Bessel functions up to infinite
order; see, e.g., Refs. 30 and 32. Here however the complete
information lies in F0,1,2. In the subsequent analysis, we will at
first only consider the couplings given by F0 and then include
also the couplings given by F1. We will neglect F2 in general,
which is valid for small A/�.

1. F0 approximation

A first approximation consists in neglecting both F1 and
F2 and considering only F0, which connects energies with the
same photon number n. This approximation is valid for the
calculation of many observables as far as the dimensionless
quantity A/� � 1—i.e., the field intensity is small compared
to the frequency—and we are interested in excitations in the
low-energy sector, as we will see below, when we analyze
the excitation spectrum and the generalized density of states.
The resulting Hamiltonian (16) is then block diagonal with
building blocks Hn

F0
, where the matrix Hn

F0
reads

Hn
F0

=
(

ε+
n F0kei�

F0ke−i� ε−
n

)
. (18)

Its eigenvalues and eigenvectors are

ε±
l,F0

= l� ± 1

2

√
4F 2

0 k2 + 
2, (19)

|χ+
l,F0

〉 = 1√
|χa|2 + |χb|2

(χa|φ+
l 〉 + χb|φ−

l 〉),
(20)

|χ−
l,F0

〉 = 1√
|χa|2 + |χb|2

(χ∗
b |φ+

l 〉 − χ∗
a |φ−

l 〉),

where

χa = 2F0kei(�/2), (21)

χb = (√
4F 2

0 k2 + 
2 − 

)
e−i(�/2). (22)

The main virtue of this approximation is the fact that it
captures the gap 
 produced at k = 0 by the ac electric
field, giving an analytical expression for its magnitude, 
 =√

4A2 + �2 − �, so this gap can be tuned by varying the field
strength of the applied ac field; see also Refs. 6,16, and 20.
We point out that an analogous phenomenon occurs in the
optics of semiconductors in a strong THz field: There the
dynamical Franz-Keldysh effect33,34 blueshifts the conduction
band edge (or, equivalently, the optical absorption edge) by
the ponderomotive energy, which also depends quadratically
on the ac-field amplitude. This so-called F0 approximation
neglects the coupling between Hamiltonians with a different
number of photons, and is therefore not useful once we are
interested in the anticrossings of the Floquet quasienergies for
nonzero momentum.

2. F1 approximation

In order to analyze higher order processes, we go one step
further and take into account the coupling elements F1, which
capture the one-photon resonances, yielding a much more
robust approximation for the Hamiltonian HF (16). At the
resonances the relevant couplings are the ones between ε+

n−1

and ε−
n , ε+

n and ε−
n+1, etc.; see Eq. (16). By applying the unitary

matrix that diagonalizes Hn
F0

,

Un = 1√
|χa|2 + |χb|2

(
χa χ∗

b

χb −χ∗
a

)
, (23)

we can construct a new effective infinite Hamiltonian which
includes the features of the one-photon resonance, and which
is again block diagonal, now mixing the sectors that differ in
one photon in the F0 approximation:

H
eff,n
F1

=
(

ε+
n−1,F0

2
Sk

F0F1k
2ei�

2
Sk

F0F
∗
1 k2e−i� ε−

n,F0

)
, (24)

where Sk =
√

4F 2
0 k2 + 
2. The intensity of the coupling is

proportional to F1, as expected. Diagonalizing this Hamilto-
nian yields the following Floquet quasienergies:

ε+
l,F1

=
⎧⎨⎩ l� + 1

2

(
� −

√
(� − Sk)2 + 16

S2
k

F 2
0 |F1|2k4

)
if k < kc,

(l + 1)� − 1
2

(
� −

√
(� − Sk)2 + 16

S2
k

F 2
0 |F1|2k4

)
if k > kc,

(25)

ε−
l,F1

=
⎧⎨⎩ l� − 1

2

(
� −

√
(� − Sk)2 + 16

S2
k

F 2
0 |F1|2k4

)
if k < kc,

(l − 1)� + 1
2

(
� −

√
(� − Sk)2 + 16

S2
k

F 2
0 |F1|2k4

)
if k > kc,

(26)

where kc is the momentum at which the one-photon resonance takes place. For the Floquet eigenvectors, it is more convenient to
write them in the basis that diagonalizes the Hamiltonian for k = 0, reading

∣∣ξ+
l,F1

〉 =
⎧⎨⎩

1√
(|χa |2+|χb|2)(|ξa |2+|ξb|2)

[ξaχa|φ+
l 〉 + ξaχb|φ−

l 〉 − ξbχ
∗
b |φ+

l+1〉 + ξbχ
∗
a |φ−

l+1〉] if k < kc,

1√
(|χa |2+|χb|2)(|ξa |2+|ξb|2)

[ξ ∗
b χa|φ+

l 〉 + ξ ∗
b χb|φ−

l 〉 + ξ ∗
a χ∗

b |φ+
l+1〉 − ξ ∗

a χ∗
a |φ−

l+1〉] if k > kc,
(27)
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|ξ−
l,F1

〉 =
⎧⎨⎩

1√
(|χa |2+|χb|2)(|ξa |2+|ξb |2)

[ξ ∗
b χa|φ+

l−1〉 + ξ ∗
b χb|φ−

l−1〉 + ξ ∗
a χ∗

b |φ+
l 〉 − ξ ∗

a χ∗
a |φ−

l 〉] if k < kc,

1√
(|χa |2+|χb|2)(|ξa |2+|ξb |2)

[ξaχa|φ+
l−1〉 + ξaχb|φ−

l−1〉 − ξbχ
∗
b |φ+

l 〉 + ξbχ
∗
a |φ−

l 〉] if k > kc,
(28)

where we have introduced

ξa =
(

(� − Sk) +
√

(� − Sk)2 + 16

S2
k

F 2
0 |F1|2k4

)
e(i/2)�,

(29)

ξb = 4

Sk

F0F
∗
1 k2e−(i/2)�. (30)

The F1 approximation captures the gap at k = 0 as well as
the first resonance. The latter gives rise to the opening of new
gaps, whose expression can be obtained analytically in this
approximation, yielding


F1 =
√(

Skc
− �

)2 + 16

S2
kc

F 2
0 F 2

1 k4
c . (31)

For a frequency � ≈ 150 meV in the mid-infrared regime, and
field intensity E0 ≈ 4.8 MV/m (which is such that A/� =
0.1), the size of the two gaps would be 
 ≈ 3 meV, 
F1 ≈ 15
meV.

C. Single-particle properties of the Hamiltonian derived
from the analytical approximations

We next consider the quasienergy spectrum for circularly
polarized field, both the full numerical result and the analytical
approximation derived in the previous sections. With increas-
ing field strength, zero-photon, one-photon, two-photon, and
higher order resonances appear. In Fig. 2 we compare the
numerical (upper panel) and the analytical results (middle and
lower panels) for the quasienergy spectrum as a function of
the wave vector kx and for weak fields. In the middle panel
we plot the F0 approximation, which reproduces very well
the gap at kx = 0, but no other features induced by the ac
field show up. The lower panel shows the results for the F1

approximation, which in addition to the F0 result captures
nicely the one-photon resonance at kc ≈ ±0.5.

The analytical approximations can be tested by computing
the density of states (DOS), which was already analyzed
numerically using the full Floquet Hamiltonian by Oka et al.,6

Calvo et al.,16 and Zhou et al.20 The generalized (time
averaged) density of states can be calculated as

D(ω) = 4
∑
k,σ

δ(ω − εk,σ,0), (32)

where the quasienergies are those defined in the first Brillouin
zone of the Floquet spectrum. In the F0 approximation,
εk,σ,l=0 = ε±

0,F0
, see Eq. (19), and the density of states can

be calculated analytically yielding

DF0 (ω) = 2

πF 2
0

|ω|�
(

|ω| − 


2

)
. (33)

Notice the presence of the gap at zero energy in the density of
states.

The simplicity of this zero-photon approximation allows
for analytical computations of many physical quantities,
something that no longer happens in general in the one-photon
approximation, for which we have to resort to numerical
calculations in most of the cases. For the generalized density
of states, by using the analytical quasienergies, Eqs. (25) and
(26), the results of both the F0 and F1 approximation are plotted
in Fig. 3 (upper panel). As a comparison, the lower panel of
Fig. 3 shows the density of states calculated numerically by
diagonalizing the full Floquet Hamiltonian (10). Once again,
notice that the F0 approximation works very well for energies
of the order of the first gap, while in order to study the first
resonance the F1 approximation excels quite well. Higher
resonances, visible in the numerical result for the density
of states at around ω ≈ 1, are almost negligible for the field
strength we are considering here.

Although the density of states was already achieved numer-
ically by various authors,6,16,20 the developed approximations
are useful in order to both obtain analytical results when
this is possible or at least simplify the numerical complexity
of the problem, as happens when we use the one-photon
approximations. In principle, these approximations are valid
for arbitrary k, as long as A/� � 1. The results for the density
of states show that in both analytical approximations and in
the full numerical case the gaps remain stable independently
of the range of integration in the momentum included in the
density of states; i.e., the inclusion of higher momentum states

−1

0

1

±
,F

1

−kc 0 kc

kx

−1

0

1

±
,F

0

−1

0

1

±

FIG. 2. (Color online) Quasienergy spectrum as a function of kx

for ky = 0. The solid lines represent the l = 0 band, the dashed lines
the l = 1, and the dash-dotted lines the l = −1 sideband. Upper panel:
The full numerical result of the quasienergies. Middle panel: The
quasienergies for the zero-photon approximation F0. Lower panel:
The quasienergies for the one-photon approximation F1. Parameters:
ky = 0, A = 0.2, � = 1.
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FIG. 3. (Color online) Density of states versus energy for the
analytical approximations F0 and F1 (upper panel) and considering
the full Floquet Hamiltonian Eq. (10) (lower panel). The F0-
approximation reproduces the gap given by 
, see text. For the
one-photon resonance in the F1 approximation, the gap at ω = 0.5
is reproduced, where the field couples modes with n and n + 1
photons. For the same field strength as considered in the F0 and
F1 approximations, the full numerical density of states is identical
up to an additional resonance at ω ≈ 1, which is due to two-photon
processes. In the inset, the region around the gap ω = 0 is blown up
for better visibility. Parameters: A = 0.1, � = 1.

does not close the gaps in our case, contrary to what was found
in Ref. 20.

III. SINGLE- AND MANY-PARTICLE EXCITATIONS IN
GRAPHENE IN A CIRCULARLY POLARIZED

AC ELECTRIC FIELD

A. Electron interactions and the formula for the dynamical
polarizability

So far we have analyzed the single-particle properties
of the Hamiltonian. However, a full description of electron
excitations in graphene requires us to understand the role of
electron-electron interactions in the system. The Hamiltonian
of the interacting system in the presence of an ac field reads
now, in the second quantization,

H (t) = vF

∑
k

�
†
kσ · [k − eA(t)]�k +

∑
q

vqn
†
qnq, (34)

where vq = 2πe2/ε0q is the 2D unscreened Coulomb interac-
tion. In the absence of the external ac field, this Hamiltonian
has been extensively studied (for a review, see Ref. 35). For
doped samples of graphene, the Coulomb interaction becomes
screened yielding a system whose low-energy excitations
around the Fermi surface are barely interacting; i.e., electrons
in graphene behave as a Fermi liquid. Moreover, a collective
excitation, a plasmon, exists.22,23 This is no longer true when
the level of doping is zero or very small, where the role of
interactions is controversial due to the singular nature of the
Dirac point, where screening is uneffective.24,36 In order to
understand the effect of interactions between electrons when

an external ac field is applied, we will compute the dynamical
polarizability, which tells us about the response of the system
to probes that couple to the electric charge. This function
will yield information about the full spectrum of electron
interactions of the system, that contains both single-particle
and collective excitations. The dynamical polarizability of
graphene in the presence of an ac electric field shows particular
features that differ from its counterpart, the two-dimensional
electron gas, as well as from the one derived for graphene
in the absence of the field.21 The detailed derivation of the
polarizability function is given in the Appendix, whereas here
we present the final result:

�(q,ω) =
∑
σ,σ ′

∑
k

∑
l

fk,σ − fk+q,σ ′

ω − εk+q,σ ′,l + εk,σ,0 + iη

×
∑

n

∣∣φn,a,∗
k+q,σ ′,lφ

n,a
k,σ,0 + φ

n,b,∗
k+q,σ ′,lφ

n,b
k,σ,0

∣∣2
. (35)

The index n stands for the Fourier component of a solution
in the sideband l of the infinite Floquet Hamiltonian. The
summation over n constitutes the scalar product of the solution
|φk+q,σ ′,l〉 with |φk,σ,0〉, where we have used the fact that
solutions belonging to the lth Brilloun zone in the Floquet
spectrum are those of the first Brilloun zone shifted by l units;
see Eqs. (5) and (7). The solution l = 0 is the one which
fulfills the condition that at A → 0, �(q,ω) becomes the
polarizability for an isolated graphene sheet. Mathematically,
it is important to notice that the analytical properties of the
dynamical polarizability do not change in the presence of
the external ac field. It is a complex function, analytical in
the upper half plane, whose real and imaginary parts are not
independent, but related via the Kramers-Kronig relations; see,
e.g., Ref. 37. The latter can also be seen as a consequence of the
causality in the response of the system to the external probe.

The polarizability is written in terms of the single-particle
excitations of the system, as in conventional linear response
theory. In the presence of the ac electric field, there is an
infinite set of single-particle excitations that differ between
them in the relative number of photons. Once the external
field is switched on, the system is no longer isolated, and
the field can pump or extract energy into the system in the
form of photons of frequency �. Therefore, the polarizability
can be seen as a linear combination of polarizabilities, each
describing excitations in which the number of photons in the
system changes by a certain integer number l. Or in other
words, the response of the system to an external probe of
energy ω and momentum q can arise from excitations in which
no extra photons are introduced in the system, as happens in
the absence of the field, or also in which a given number l

of photons is introduced or extracted from it. Similar results
as those shown here have been derived in the context of
low-dimensional semiconductors38 and the 2DEG.28 The latter
is usually the benchmark to compare the results derived for
graphene, and therefore we include here the formula for the
ease of comparison:

�2DEG
ac (q,ω) =

∑
k

∑
l

fk − fk+q

ω − εk+q,l + εk,0 + iη
. (36)

Note in this expression that the effects due to the ac electric
field appear in two different places: (i) the index l of the
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sideband reflecting a change in the number of photons, and
(ii) as a modification of the single-particle excitations in εk,σ,l .
The situation is more complicated in the case of graphene,
Eq. (35), where also a momentum-dependent overlap term
between the excitations with different momentum must be
included. This overlap is reflected in the polarizability via the
scalar product between quasieigenstates, and it is in turn a
consequence of the existence of the pseudospin in graphene.
The effect of the the electric field on the electronic system
can be understood in terms of transfer of spectral weight,
as we shall show in the next section. As the electric field is
switched on, the spectral weight is reorganized, although in a
way that still preserves the conservation rule imposed by the
f -sum rule, that was derived and analyzed in the context of
low-energy graphene by Sabio et al.25

As a last remark, since we are dealing with a system in
which a polarized ac electric field is already present, one has
to wonder about the possible influence of the polarization of the
external probe to which the system responds. In fact, since we
are analyzing the dynamical polarizability, which arises from
the coupling between the electronic density and the potential
induced by the external probe, the response of the system in the
linear regime is insensitive to the polarization of the probe field.
In order to see a response that depends on the polarization of the
probe, we would have to analyze the response of the electronic
current, which couples to the electric field and whose linear
response function is the conductivity. Notice, however, that
the response function itself will not be altered due to this
polarization, since in linear response it only depends on the
properties of the system in the absence of the external probe
by virtue of the fluctuation-dissipation theorem.

B. Analytic approximations for the dynamical polarizability

We now evaluate the dynamical polarizability (35) using
the analytic approximations developed in Sec. II B. We first
consider the imaginary part of (35). This yields the response
of the noninteracting system to an external probe of energy
ω and momentum q, and is a building block for the random
phase approximation (RPA). RPA is known to work well for
doped graphene,35 where Landau’s theory of the Fermi liquid
provides a good description of the low-energy excitations. In
the case of undoped graphene, the issue is more complicated
due to the lack of screening near the Dirac point.24 In our
case, due to the opening of a gap at k = 0, we expect RPA to
be sufficient to describe the main features of the response of
the system once electron-electron interactions are taken into
account.

1. F0 approximation

In the F0 approximation a gap opens up at zero momentum,
so it can be used for a qualitative description of the response
to an external ac probe. We set T = 0, and for the moment
we will restrict ourselves to undoped graphene. In this
case, the dynamical polarization involves only the term that
accounts for transitions between the Floquet bands (0,−) and
(0,+), i.e., transitions in which the number of photons is

−0.05
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Π

(ω
)

0 0.05 0.1 0.15
ω

= 0.05
2 = 0.1

= 0.15
q

q1

q3

F
0

FIG. 4. (Color online) Imaginary part of the polarizability in the
F0 approximation as a function of ω and for different values of
q, Eq. (38). For ω <

√
F 2

0 q2 + 
2, no excitations are possible, as
compared to free graphene, where no excitations are possible for
ω < q. Note that only for small q = 0.05, the effect of the gap is
visible as a shift of the divergence away from ω = q. Parameters:
A = 0.1, � = 1.

conserved:

�F0 (q,ω) =
∑

k

|〈χ+
k+q,0|χ−

k,0〉|2
ω − ε+

k+q,0 + ε−
k,0 + iη

, (37)

where |χ±
k,0〉 are the eigenvectors from the F0 approximation;

see Eq. (20). We find

Im�F0 (q,ω) = −1

4

F 2
0 q2√

ω2 − F 2
0 q2

×
(

1 + 
2

ω2 − F 2
0 q2

)
�

(
ω2 − F 2

0 q2 − 
2) ,

(38)

with 
 = √
4A2 + �2 − � being the gap opened at the first

resonance. This is actually the dynamical polarizability for a
“gapped graphene”; now the gap is due to the presence of the
circularly polarized ac field. Gapped graphene has been studied
extensively by Pyatkovskiy,39 who also derived analytical
expressions for the real part of the polarization, for both doped
and undoped graphene. We show the imaginary part of the
polarizability in the F0 approximation in Fig. 4. For a given
momentum of the external probe, the energy threshold required
to produce single-particle excitations is increased due to the

existence of the gap, being located now at ω =
√

F 2
0 q2 + 
2.

This yields a rearrangement of the spectral weight of the
excitations, which might allow for the existence of more
complex excitations in the spectrum of the interacting system.
We investigate this question within RPA. The polarizability in
the RPA is

�RPA(q,ω) = �0(q,ω)

1 − vq�0(q,ω)
, (39)

where the denominator is the dielectric function in RPA with vq

being the 2D unscreened Coulomb potential. In order to have
long-lived collective excitations, i.e., plasmons, the dielectric
function must vanish at certain points ωp(q), which leads to the
conditions vqRe�0(q,ω) = 1 and Im�0(q,ω) = 0. In Fig. 5
the imaginary and real part of the polarizability in the RPA
are plotted, where we use in Eq. (39) �0(q,ω) = �F0 (q,ω)
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FIG. 5. (Color online) Imaginary and real part of the polarizabil-
ity in the F0 approximation as a function of ω for different q in
the RPA. The divergence in the imaginary part of the polarizability
has disappeared, but the real part has not developed a resonance,
which would be the signature of the existence of collective electronic
excitations. Parameters: A = 0.1, � = 1.

[Eq. (37)]. It can be seen that the divergence in the threshold
of excitations found for the noninteracting polarizability has
disappeared, a feature that is also observed in graphene in the
absence of ac fields. However, the real part of the polarizability
does not develop a resonance, leading to the absence of
plasmons, at least within the RPA of the F0 approximation. In
order to test whether this is still true when higher order photon
resonances are included, we analyze the F1 approximation in
the next section.

Before that, let us analyze the case of doped graphene. As
already shown in Ref. 39 for the case of gapped graphene, the
plasmon already present in the system without ac fields is still
robust once a weak field is introduced. The main effect of the

external ac field is to modify the plasmon dispersion:

ωF0
p (q) =

√
gNsNvF0qμ

2

(
1 − 
2

4μ2

)
, (40)

where g = e2/vF ε0h̄ is the fine-structure constant of
graphene. The correction affects the plasmon frequency ω0 =√

gNsNvF0μ

2 (1 − 
2

4μ2 ), but not the dependence on momentum,

which still follows the law ωF0
p (q) ∝ √

q. The plasmon fre-
quency is diminished due to the effect of the external ac field,
since F0 < 1 and 1 − 
2/(4μ2) < 1. The correction coming
from the factor F0 is essentially due to the renormalization of
the Fermi velocity due to the ac field. The second correction
depends on the relation of the chemical potential to the gap at
zero momentum, and it is maximal for a chemical potential
below 
/2, where the plasmon is completely suppressed
since no electrons are populating the upper Dirac cone. For
chemical potentials above this value, the correction tends to
be smaller, being almost negligible for μ � 
/2. We point
out that similar results hold in a quite different context, that
of graphene antidot lattices,40,41 where it was found that in the
limit of low doping, gapped graphene models reproduce very
well the plasmon dispersion of the antidot lattice.

In short, the results from the F0 approximation yield a
similar picture to that of graphene in the absence of an external
field, and the main effect of the ac field is a renormalization
of the single- and many-particle spectrum, with a shift of the
threshold for excitations due to the gap at zero momentum.

2. F1 approximation

The F1 approximation accounts for nonzero photon pro-
cesses, neglected in the F0 approximation. It is not fully
analytically tractable in the calculation of many observables.
In the F1 approximation using Eqs. (25)–(28) the polarizability
for undoped graphene at T = 0 becomes

�F1 (q,ω) =
∑

k

|〈ξ+
k+q,0|ξ−

k,0〉|2
ω − ε+

k+q,0 + ε−
k,0 + iη

+ |〈ξ+
k+q,−1|ξ−

k,0〉|2
(

1

ω − ε+
k+q,−1 + ε−

k,0 + iη
− 1

ω − ε−
k+q,1 + ε+

k,0 + iη

)

+ |〈ξ+
k+q,−2|ξ−

k,0〉|2
(

1

ω − ε+
k+q,−2 + ε−

k,0 + iη
− 1

ω − ε−
k+q,2 + ε+

k,0 + iη

)
. (41)

Here, there are three different contributions to the polarizabil-
ity, coming from the Floquet bands l = 0, l = ±1, and l = ±2,
i.e., from excitations that involve the exchange of up to two
photons from the external field. However, for the electric fields
in which this approximation holds, the contribution from the
l = ±2 components is essentially negligible, and therefore
only zero- and one-photon processes will be considered. In
what follows we evaluate (41) numerically, first integrating
the imaginary part and then computing the real part via the
Kramers-Kronig relations.

Figure 6 shows the imaginary part of the polarizability
�F1 for fixed q as a function of ω. In the upper panel, the
components l = 0 and l = ±1 and their sum are shown for

q = 0.1, in order to illustrate where its structure comes from.
The two lower panels represent the total polarizability for two
different wave vectors q, divided into two regions for better
visibility of the different features.

Several new features emerge from the F1 approximation.
As shown in Fig. 6, at the level of zero-photon processes,
there is a gap at zero momentum, already captured in the F0

approximation. In addition, gaps appear at higher momenta,
where the first anticrossing of Floquet sidebands occurs
(see Fig. 2). For a sufficiently small q this second gap
translates into two small gaps in the single-particle excitation
spectrum around ω ≈ 1, which are eventually closed for higher
momenta, as shown in Fig. 6 (lower panel, right plot). The
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FIG. 6. (Color online) Imaginary part of the polarizability �F1

as a function of ω. Upper panel: q = 0.1; the components l = 0, ±1
of the polarizability and their sum are shown, see Eq. (41). Lower
panels: Imaginary part of the total polarizability as a function of ω

for two different q: q1 = 0.05, q2 = 0.1. Left plot for ω < 0.4, right
plot for ω > 0.7. Parameters: A = 0.1, � = 1.

first of those gaps, for 0.9 < ω < 1, is due to the fact that
for electrons from the lower cone of graphene no states are
available in the upper band for those values of q and ω due
to the anticrossing of Floquet sidebands. The second one, at
1 < ω < 1.1, is due to the lack of states in the lower cone in
the region where this anticrossing occurs with lower Floquet
sidebands.

The most important new features of the response of the
system come however from the contribution of one-photon
processes, in which transitions from the l = 0 to the l =
±1 sidebands are taken into account. New single-particle

excitations appear below ω =
√

F 2
0 q2 + 
2, leaving only a

small region of energies where no excitations are found, a
region which again is closed for sufficiently large q (dashed
line for q = 0.1).

One-photon processes introduce new single-particle ex-
citations into the response of the system, and we next
examine the effect of these processes on the collective
excitations of the system. The RPA polarizability �F1,RPA

is shown in Fig. 7 for different values of the external
momentum q. One photon processes have an important effect
on the response of the interacting system, allowing for the ex-
istence of collective excitations for small enough momentum,
see curves for q1 = 0.035, q2 = 0.05 in Fig. 7. For those,
the plasmon conditions are fulfilled, which is reflected in
the development of a resonance in the real part of the RPA
polarizability. For an external momentum of q = 0.05, e.g.,
the resonance is located at ω 
 0.021, which is already in the
region where the imaginary part of the polarizability is zero,
allowing for an undamped plasmon. It is important to remark
that this plasmon becomes unstable in two different scenarios.
(i) The first is for large enough momentum of the external
probe, where the resonance is weakened and it occurs in a
region where single-particle excitations exist, so the plasmon
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FIG. 7. (Color online) Imaginary and real part of the polarizabil-
ity �F1 in the RPA approximation. Notice the resonance in the real part
for small momenta q1 = 0.035 and q2 = 0.05 (lower panel), where
no excitations in the imaginary part exist (upper panel), pointing to
the existence of collective excitations. Parameters: A = 0.1, � = 1.

can decay into those excitations; see q3 = 0.15 in Fig. 7.
(ii) When two-photon processes are considered, there is no
longer a region where the imaginary part of the polarizability
is zero. For weak fields however these processes are negligible
and their effect on the plasmon should also essentially be
irrelevant. However, this suggests that as we increase the
intensity of the electric field, and higher order photon processes
are important, there is no region of momenta q in which the
plasmon is stable.

For doped graphene, the F1 approximation introduces
similar features as those described for undoped graphene; see
Fig. 8. The effect of the anticrossing of Floquet sidebands is
to induce gaps in the response of the system for ω ∼ 1, and
processes including the exchange of one photon give rise to

FIG. 8. (Color online) Imaginary part of the polarizability for
doped graphene as a function of ω for q = 0.05. Both the F0 (solid
red) and the F1 approximation (dashed dark red) are shown. In the
lower panels, the upper plot is split into two parts in order to better
visualize the different regions of ω. Parameters: A = 0.1, � = 1,
μ = 0.2.
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FIG. 9. (Color online) Polarizability in the RPA approximation
for doped graphene in the F1 approximation. Upper panel: Imaginary
part. Lower panel: Real part. The results are shown for two different
momenta q = 0.05 and q = 0.15. In both figures the results are
compared with the F0 approximation. Notice the existence, in
both approximations, of the resonance in the real part of the
polarizability, signalizing the existence of a collective excitation. For
large momentum q = 0.15, however, the imaginary part shows no gap
and therefore the plasmon can decay into single-particle excitations.
Parameters: A = 0.1, � = 1, μ = 0.2.

new excitations for small energies. In order to quantify the
effect of these processes, in this figure the polarizability is
compared to the one for doped graphene, using the F0 approx-
imation, where only zero-photon processes are considered. The
RPA response of the interacting system is shown for a couple
of representative external momenta in Fig. 9. As happened in
the undoped case, for small external momentum (q = 0.05
in Fig. 9) there is a resonance in the real part, signaling
the existence of a plasmon, which again has a renormalized
dispersion relation due to the effect of the external ac field.
However, nonzero-photon processes are responsible again for
the appearance of low-energy excitations that tend to make the
plasmon unstable for large enough momenta q (q = 0.15 in
Fig. 9) and for larger intensities of the field, as discussed for the
undoped case. These momenta q for which plasmons become
unstable are still lower than those for which the plasmon is
damped in graphene without ac field.

Summarizing, the inclusion of nonzero-photon processes
is crucial in order to capture the physics of the response of
graphene to an external probe in the presence of a weak ac field.
This is due to the appearance of excitations in the low-energy
spectrum of the system, not included in the F0 approximation,
that allow for the existence of collective excitations in undoped
graphene, but make those plasmons unstable for smaller
momenta than their counterparts in graphene with no ac fields.

IV. CONCLUSIONS

In this work we have analyzed the properties of graphene
under an external circularly polarized ac field in the weak-

field regime. We have developed analytical approximations
to the Hamiltonian, the so-called F0 (see Sec. II B1) and F1

approximations (see Sec. II B2), that allow a certain analytical
tractability of many relevant objects. The F0 approximation
includes only zero-photon excitations in the system, and is
useful to calculate certain observables in the low-energy sector.
The F1 approximation includes higher order photon processes,
allowing for the analysis of a wider range of observables and
a larger energy sector. However, it requires in many cases
numerical calculations to extract the observables.

Special emphasis has been put on the calculation of the
polarizability of the system, which can be used to analyze the
spectra of single- and many-particle excitations of the system.
We have derived a general expression for the polarizability of
graphene in the presence of an ac electric field, which we have
analyzed in the context of the F0 and F1 approximations. While
the former allows for analytical expressions and captures
well the effect of the zero-momentum gap in the system, it
misses the nonzero-photon processes, that are captured by the
F1 approximation and in turn are responsible for the emergence
of collective excitations even for undoped graphene, as far
as the random phase approximation remains valid. However,
it also points out that these collective excitations are less
stable when compared to graphene with no external ac field:
For large enough external momenta and ac field intensi-
ties, these excitations become damped and acquire a finite
lifetime.

We have shown that circularly polarized ac fields can be
used to modify the properties of graphene in several ways:
(i) They open up gaps at zero momentum that can be exploited
in practical applications, (ii) they permit the existence of
plasmons (in both undoped and doped graphene), (iii) the
plasmon frequency is tunable with the external field, and
finally, (iv) for large enough fields the plasmons become
unstable. Moreover, we have developed and tested analytical
tools to analyze theoretically the behavior of graphene in the
presence of ac electric fields, which should be useful in future
works in this field.
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APPENDIX: DERIVATION OF THE POLARIZABILITY FOR
CIRCULARLY POLARIZED FIELD

The derivation of the formula for the dynamical polariz-
ability follows the lines of its counterpart in the 2DEG.28 The
wave function for graphene under a periodic driving can be
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written by use of the Floquet theorem as

ψk,σ (r,t) = 1√
2
eikre−iεk,σ tφk,σ (t), (A1)

where εk,σ is the quasienergy and φk,σ (t) are the Floquet
states which fulfill the time periodicity of the driving field,
and we have chosen the solution corresponding to the first
Brillouin zone. After applying a weak probe potential, these
wave functions are not any more eigenfunctions of the full
Hamiltonian, but we can use them as a basis to write the new
wave function:

�k,σ (r,t) =
∑
k′σ ′

ak′,σ ′(t)ψk′,σ ′(r,t). (A2)

Inserting this into the Schrödinger equation for the Hamilto-
nian H0(t) + H1(t), where H0(t) is the Hamiltonian for the
periodically driven graphene and H1(t) = V (r,t) represents
the weak probe potential, we are left with a differential
equation for the coefficients ak,σ (t):

i
∑
k′σ ′

ȧk′,σ ′(t)ψk′,σ ′(r,t) =
∑
k′σ ′

ak′,σ ′(t)V (r,t)ψk′,σ ′ (r,t).

(A3)

We can now project this equation into a state ψk′′,σ ′′ , yielding

ȧk′′,σ ′′(t) = −i
∑
k′σ ′

ak′,σ ′(t)ei(εk′′,σ ′′−εk′ ,σ ′ )tφ∗
k′′,σ ′′(t)φk′,σ ′(t)V

× (k′′ − k′,t), (A4)

where V (k′′ − k′,t) is the projection of the probe potential
into the states k′ and k′′. Now we can expand this equation in

a power series of the external potential, and keeping only the
first order we are left with

ȧ
(1)
k′′,σ ′′(t) = −iei(εk′′ ,σ ′′−εk,σ )tφ∗

k′′,σ ′′ (t)φk,σ (t)V (k′′ − k,t).

(A5)

This equation can be simplified by Fourier-transforming it,
yielding

ak′′,σ ′′ (t) =
∫

dω

2π
V (k′′ − k,ω)e−iωt ei(εk′′ ,σ ′′ −εk,σ )t eηt

×
∑
nn′

ei(n′−n)�t
[
φ

n′,a∗
k′′,σ ′′φ

n,a∗
k,σ + φ

n′,b∗
k′′,σ ′′φ

n,b∗
k,σ

]
ω − (n′ − n)� − (εk′′,σ ′′ − εk,σ ) + iη

.

(A6)

In order to get the response of the system to the external
probe in linear response, we write down the expression of the
induced charge density,

ρ ind
k,σ (r,t) = �∗

k,σ (r,t)�k,σ (r,t) − ψ∗
k,σ (r,t)ψk,σ (r,t)

=
∑
k′σ ′

a∗
k′,σ ′(t)ψ∗

k′,σ ′(r,t)ψk,σ (r,t)

+ ak′,σ ′(t)ψ∗
k,σ (r,t)ψk′,σ ′(r,t), (A7)

and insert the result obtained for ak,σ (t). After some algebra
we arrive at

ρ ind(r,t)

=
∑

q

∫
dω

2π
V ext(q,ω)e−iωt eiqr

∑
σσ ′

∑
k

fk,σFk,σ,σ ′ , (A8)

where we have introduced the short notation

Fk,σ,σ ′ =
∑
nn′

∑
mm′

[
1

2

ei(n′−n)�tei(m′−m)�t
(
φ

n′,a∗
k+q,σ ′φ

n,a
k,σ + φ

n′,b∗
k+q,σ ′φ

n,b
k,σ

)(
φ

m′,a∗
k,σ φ

m,a
k+q,σ ′ + φ

m′,b∗
k,σ φ

m,b
k+q,σ ′

)
ω − (n′ − n)� − (εk+q,σ ′ − εk,σ ) + iη

+ 1

2

e−i(n′−n)�te−i(m′−m)�t
(
φ

n′,a
k−q,σ ′φ

n,a∗
k,σ + φ

n′,b
k−q,σ ′φ

n,b∗
k,σ

)(
φ

m′,a
k,σ φ

m,a∗
k−q,σ ′ + φ

m′,b
k,σ φ

m,b∗
k−q,σ ′

)
−ω − (n′ − n)� − (εk−q,σ ′ − εk,σ ) − iη

]
. (A9)

By comparing with the Poisson equation

ρ ind(r,t) =
∑

q

∫
dω

2π
V ind(q,ω)e−iωt eiqr q2

4π
, (A10)

we see that the induced potential must fulfill

V ind(q,ω) = 4π

q2
V ext(q,ω)

∑
σσ ′

∑
k

fk,σFk,σ,σ ′ . (A11)

We sum on both sides V ext(q,ω) and get

V tot(q,ω) =
(

1 + 4π

q2

∑
σσ ′

∑
k

fk,σFk,σ,σ ′

)
V ext(q,ω),

(A12)

where the dielectric function is given by

ε(q,ω) = 1

1 + 4π
q2

∑
σσ ′

∑
k fk,σFk,σ,σ ′

. (A13)

In the RPA approximation we obtain therefore

ε(q,ω)RPA = 1 − 4π

q2

∑
σσ ′

∑
k

fk,σFk,σ,σ ′ . (A14)

After substituting the expression for Fk,σ,σ ′ and some straight-
forward manipulations, we arrive at our desired result for the
dynamical polarizability:

�(q,ω) =
∑
σσ ′

∑
k

∑
l

fk,σ − fk+q,σ ′

ω − εk+q,σ ′,l + εk,σ,0 + iη

×
∑

n

∣∣φn,a,∗
k+q,σ ′,lφ

n,a
k,σ,0 + φ

n,b,∗
k+q,σ ′,lφ

n,b
k,σ,0

∣∣2
. (A15)

Notice that now we have simplified the expression by writing
it as the scalar product between different Floquet sidebands by
using Eqs. (5) and (7).
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17F. J. López-Rodrı́guez and G. G. Naumis, Phys. Rev. B 78, 201406
(2008).

18P. H. Rivera, A. L. C. Pereira, and P. A. Schulz, Phys. Rev. B 79,
205406 (2009).

19W. Zhang, P. Zhang, S. Duan, and X. Zhao, New J. Phys. 11, 063032
(2009).

20Y. Zhou and M. W. Wu, Phys. Rev. B 83, 245436 (2011).
21K. W. K. Shung, Phys. Rev. B 34, 979 (1986).
22E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

(2007).
23B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318

(2006).
24S. Gangadharaiah, A. M. Farid, and E. G. Mishchenko, Phys. Rev.

Lett. 100, 166802 (2008).
25J. Sabio, J. Nilsson, and A. H. Castro Neto, Phys. Rev. B 78, 075410

(2008).
26T. Stauber, Phys. Rev. B 82, 201404 (2010).
27R. Roldán, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 085408

(2009).
28C. Zhang, Phys. Rev. B 65, 153107 (2002).
29M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
30G. Platero and R. Aguado, Phys. Rep. 395, 1 (2004).
31S. Kohler, J. Lehmann, and P. Hänggi, Phys. Rep. 406, 379

(2005).
32J. Hausinger and M. Grifoni, Phys. Rev. A 81, 022117 (2010).
33A. P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996).
34K. B. Nordstrom, K. Johnsen, S. J. Allen, A.-P. Jauho, B. Birnir,

J. Kono, T. Noda, H. Akiyama, and H. Sakaki, Phys. Rev. Lett. 81,
457 (1998).

35V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro
Neto, Rev. Mod. Phys. (to be published 2012).
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